171

Interactive Evolution of Dynamical Systems

Karl Sims

Thinking Machines Corporation
245 First Street, Cambridge, MA 02142

1 ABSTRACT

Simple local rules for dynamical and cellular automata systems
can give rise to relatively complex and interesting structures. This
paper describes how rules for these systems can be bred to search for
new and unusual examples of emergent behavior from dynamical
systems. Random mutations and matings of rule sets, followed
by user selection based on observations of resulting behaviors,
allow a variety of different dynamical systems to be interactively
evolved. Two examples of breeding rules for two dimensional
dynamical systems have been implemented and are presented. The
first involves cellular automata networks with rules represented
by lookup tables. The second uses sets of variable length lisp
expressions to describe the initial states, and differential equations
for grids of state variables. Results suggest that these are powerful
methods for creating dynamical systems with emergent complexity
that would be difficult to build by design.

2 INTRODUCTION

Cellular automata (CA) networks can be useful tools for modeling
complex dynamical systems including physical and biological sys-
tems. Repeatedly applied local rules which determine the new state
of each cell from its current state and the states of its neighbors can
give rise to surprising levels of complexity, physical accuracy, and
even “life-like” behavior [3, 10, 13, 20, 21, 22, 26, 27]. Simulations
involving locally applied rules can be preferable to those with glob-
ally operating rules because they are highly parallel in nature, and
probably more analogous to real chemical and biological systems
of millions of interacting molecules or cells [1, 14, 15, 23].

One of the challenges involved in creating and studying arti-
ficial life-like systems, is designing local rules which successfully
giverise to interesting global behaviors. It can be difficult to specify
and predict the effects of local rules on the overall system, espe-
cially as they become more complex. This paper proposes methods
that allow new forms of local rules to be generated that result in
interesting and complex dynamical systems, but the local rules are
not required to be preconceived, designed, or even understood by
the human creator.

In biological systems, DNA could be considered as the spec-
ification of local rules which are acted out by proteins. They, in
turn, define the biochemical dynamical systems which result in the

Published in: Toward a Practice of Autonomous Systems:

development and functioning of organisms. As it would currently
be very difficult to design DNA sequences for new types of viable
organisms, it may also be difficult for humans to specify the lo-
cal rules for complex life-like simulations. Both natural evolution
and the simulated evolution presented here involve the variation
and selection of rules for dynamical systems. Although the dy-
namical systems created here are relatively simple, they demon-
strate the ease of achieving emergent complexity by combining
the techniques of locally controlled dynamical systems with the
evolutionary process.

2.1 Simulated Evolution

Genetic algorithms are search techniques in which populations of
test points are evolved by random variation and selection [5, 7].
They are employed in a number of applications to find optima in
very large search spaces. Reproduction of genotypes with ran-
dom variation, and selection of phenotypes based on a non-random
fitness function drives a population of individuals towards higher
and higher levels of fitness. Sexual reproduction allows desirable
traits to evolve independently and later be combined into the same
genotype.

The work presented here uses random variation of genotypes
that represent rules for dynamical systems to allow searching spaces
of possible dynamical systems. For each generation, the rules of
each genotype are applied locally to the cells of 2D networks.
Selection is performed on the phenotypes which are the resulting
global behaviors of these systems. In this way, the direction of the
simulated evolution is determined by these global behaviors, but
mutations are performed on the genotypes representing the encoded
local rules.

Population sizes used for genetic algorithms are typically fairly
large (100 to 1000 or more) to allow searching of many test points
and avoiding local optima. For interactive efficiency and user in-
terface practicality the examples presented here use a much smaller
population size (4 - 16) and only one or two individuals are chosen
to reproduce for each new generation.

2.2 Interactive Selection

In the work described here, the fitness of dynamical systems is
determined interactively by a user at each step of the evolution

Proceedin§39
1

of the First European Conference on Artificial Life, Paris, Dec.

MIT Press

172 Karl Sims

process instead of automatically by a pre-defined fitness function.
Perceptual selection is used because fitness functions that could
determine how interesting or aesthetically pleasing a dynamical
system is would be difficult to define, and many local optima may
be of interest instead of just one global optimum. This allows the
user to not only observe the intermediate results as the evolution
progresses, but also to interactively navigate through the spaces of
possible results.

In 7he Blind Watchmaker, Dawkins demonstrates the power of
Darwinism with a simulated evolution of 2D branching structures
called “biomorphs.” Here, the user also interactively selects the
shapes that survive and are reproduced to create each new genera-
tion [4].

2.3 Overview of the Paper

Two different mcthods for representing rules for 2D dynamical
systems have been implemented. The first requires the value of
eachcell tobe aninteger of fixed length. A lookup table determines
the next state of each cell from an index made from its current state
and those of its neighbors. This allows all possible CA rules for a
given number of bits per cell to be described by filling the lookup
table with different values. In this case, the lookup table is the
genotype which can be mutated and mated with other lookup tables
to evolve CAs with various behaviors.

The second representation for genotypes of rules for dynamical
systems contains lisp expressions that determine the initial state
and the change of state of the system over time. Each cell can
contain one or more “continuously” varying values (e.g. floating
point numbers) instead of fixed-length integers. The initial state
is determined by lisp expressions that return values for each cell
location. Non-linear differential equations describe the behavior
of the system, and are also represented by lisp expressions that
calculate time derivatives for each cell as functions of the current
state and neighboring states.

In the next section, the breeding of lookup tables for CA systems
will be described. In section 4, breeding continuous dynamical sys-
tems with genotypes containing lisp expressions will be presented.
Finally in sections 5 and 6, results are given and future work is
suggested.

3 BREEDING CA LOOKUP TABLES

CA networks that contain a limited number of bits per cell can be
represented and quickly simulated by using lookup tables to find the
new state of each cell from an index of its current state and the state
of its neighbors. In this work, CA lookup tables are interactively
evolved by the following process:

1. A population of initial random lookup tables are generated
by randomizing their bits. If zeros and ones are created with equal
probability, chaotic behavior usually results, so zeros are created
with a lower probability such that structured behavior is more likely
(around 1/8 zeros is used).

2. For each lookup table, a 2D grid of cells is created and the
contents are initialized to random values. The values are updated

using the table for a number of iterations (30 - 200). Each iteration
is displayed to the user in real-time as the simulation proceeds, by
mapping the cell values into pixel intensities and displaying the
grids of cells as images.

3. The user observes the animated behavior of the CA systems
for each of the lookup tables, and selects one or more to survive.

4. The lookup tables corresponding to the selected systems are
reproduced with mutations or combined with each other to create
new lookup tables for the next generation.

This process of perceptual selection of CA behaviors, and re-
production with variation of the lookup tables is repeated (steps 2
- 4). Figures 1 - 3 show a variety of results that can occur after a
number of generations. (Typically around S - 20 are required.)

3.1 Mutating and Mating CA Tables

For new variations of CA networks to occur, the lookup tables must
be reproduced with some frequency of mutations, as stated in step
4 above. The method used here involves subjecting each bit in the
table to probabilistic inversion. (An inversion frequency of around
0.01 is used because it causes frequent variation in results, but still
provides some stability.) A non-local approximation of this method
can require generation of fewer random numbers: the locations are
chosen at random for a constant number of mutations.

Sexual combination of two parent lookup tables is performed
by crossing over information between the parents to generate a new
table. Values are copied from one of the parenttables, but with some
frequency, the source table is switched to the other parent. This
causes connected segments of the table to be more likely to stick
together then sections at distant locations. (A frequency of .001
is used here such that only a few crossovers are likely in any one
mating.) Again, an approximation to this method can save random
number generation by choosing random locations for a constant
number of crossovers.

3.2 Limitations of Representation

Although CA lookup tables can produce interesting behaviors, sev-
eral limitations are noticeable: tables can become very large when
the length of the state integers is more than a few bits; there is a
limited number of states that each cell can have; and the space of
possible tables is highly dimensional but still limited in its extent.

If the state of each cell contains /V bits, and 3x3 neighboring
states are used to determine each new state, the table will contain
new states for each of 2°" possibilities and is N2*" bits in length.
This is acceptable for states of 1 bit where the table length is 512
bits, but for 2 bit states the table is already 524,288 bits long, which
can prevent mutations and matings from being calculated quickly.
Several modifications can help reduce the size of lookup tables:

1. The number of bits taken from the neighbors can be reduced
to a subset of the total bits of their states.

2. The bits of neighbors can be combined with various associa-
tive operators and the results used in the table index instead of the
neighbor bits themselves. (For example, and, or, zor, min, maz,
or +, might be used.) This limits the CAs to symmetrical behav-

Interactive Evolution of Dynamical Systems 173

ior, but this can actually be advantageous since asymmetrical rules

commonly give undesirable directional shifting of the system. : "}3 iy ‘:"f' T "»,'f"._ &t &) Fa
3. Another useful method for shortening lookup table sizes - » “..". 5 . "
involves shifting and wrapping the table on top of itself. Each bit T, - : o - o ; LA 1
in the table can be a part of more than one new state values. For ‘_l- . % '-"_;’ T e eetde- '., T
example, if states consist of 4 bits, the lookup table can be shifted by K T - ‘,;:.:;Tv' -l “L
0,1,2, or 3 bits to provide 4 times the number of new states with the v g M = ‘) %= 5o 2
same table length. Tables could be read backwards and scrambled > 2 .-"'....:_.‘ \ _‘\"- ¢ ,f._ '_¢:= — :\" re :
in various ways to provide even more shortening if necessary. The .- -_..é’“ ’ . L . . ‘:" " . o ‘
consequences of duplicating the effects of the lookup table bits = e e - =T =3 1“.';‘.. —r U
have not been evaluated in detail, but it has been experimentally A K * '.-‘. “ * . Yae >
observed to be effective. Some viruses have developed a strategy N P 3 ‘- A’ ‘.' O "
similar to this — certain regions of RNA can be read twice, once . . fee T G T 4 s -
shifted over by a base pair, to encode two different proteins [2]. ' vl t) S e ey,
These methods have allowed lookup tables for CA networks ‘." ' o,
with 3, 4, or more bits per state to be mutated, mated, and simulated ‘o .

at interactive rates. [Figures 1 - 3].

A second limitation of using lookup tables to describe dynami-
cal systems is that they only allow the states to have a fixed number
of integral values. This tends to give the system a quantized look
with regular shapes and blocks of pixels. Instead, it might be
desirable to have cells contain values that can vary continuously.

A final limitation of evolving CA lookup tables, is that the
extent of possible results is fixed. Although the dimensionality is
very high, all genotypes are essentially equally complex and can
not evolve towards higher levels of complexity. The parameters
used to express the genotype are fixed; the number of bits in the
state of each cell and the operations for combination of neighbors
can not be modified or extended by mutations.

4 BREEDING CONTINUOUS DYNAMICAL SYSTEMS

In an attempt to surpass the limitations described above, a sec-
ond representation for dynamical systems is presented. Arbitrary
differential equations for continuously varying state variables are
described by hierarchical lisp expressions which can be mutated,
mated with each other, and evaluated to perform simulations.

4.1 Lisp Expressions as Genotypes i R : -3 N %

Traditionally, genotypes consist of fixed-length strings of digits S
or parameters, such as the ones described above. Fixed-length # W
genotypes and fixed expression rules limit the phenotypes to that ¢ =i §
pre-defined space of possible results. Koza has used lisp expres- . .« o~ P
sions as genotypes such that the dimensionality of the search space
itself can be extended to solve problems such as artificial ant navi- . . S5,
gation and game strategies [8, 9]. Discovery systems, such as AM ‘
and Eurisko, also utilize a form of mutating lisp programs [11]. & W]
Recently, artificial evolution of lisp expressions has been used to T - 2 * 7. - .
generate unusual pictures and textures for computer graphics {17]. a ! T #% o » ,‘i“ .Z o
In this application, lisp expressions are used as genotypes to Ho- e

determine the initial states and time derivatives for variables of “ et N
continuous dynamical systems. For example, a system containing

two quantities, A and B, at each grid location is described by four
equations: Figure 3: Evolved CA - Sparkles

¢
e

174 Karl Sims

Ao = Fao(X,Y)
Bo = Fso(X,Y)
dA/dt = Fy4(A, B)
dB/dt = Fy5(A, B)

F40 and F'gg are functions that determine the initial values for each
element of A and B fromtheir grid locations (X,Y). Fas and Fup
are functions that determine the time derivatives for each element of
A and B using the current state of the system. Arbitrary functions
for Fao, FBo, Fya, and Fyp, are specified by lisp expressions
which can vary in size, structure, and behavior. A genotype of lisp
expressions that would describe a simple reaction-diffusion-like
system of two chemicals that diffuse and inhibit each other might
be:

Ap = (noise .8 .4)
By = (noise .9 .5)
dA/dt = (— (laplacian A) B)
dB/dt = (- (laplacian B) A)

The list of primitive functions, or function set, that can be chosen
to create these lisp expressions, contains operators including stan-
dard common lisp functions: +, —, x, /, mod, round, min, max, abs,
expt, log, sin, cos, atan, negate, sqrt, square, dissolve, if, and plusp
[18]. The function set for the initial state expressions also contains a
noise procedure (as used in the example above) that generates solid
noise from a frequency parameter and an initial random-seed value
[12, 16]. The function sets also include operations that can access
neighboring values of the elements of their arguments, perform
convolutions with arbitrary masks, and find first and second order
spatial derivatives: x-grad, y-grad, grad-mag, grad-in-direction,
grad-direction, laplacian, anisotropic-laplacian, curl, convolve-5-
neighbors, and convolve-9-neighbors. When these operations are
used in various combinations, many different types of differential
equations can be specified.

Simple random expressions are created for the initial state and
time derivatives of each state variable. A random expression is
generated by choosing from: a random constant value, an input
variable (such as X, Y, A, or B), or a function from the function
set with recursively generated random expressions for arguments.
Interactive evolution is performed by first creating several geno-
types with expressions generated in this way, and then displaying
the corresponding simulations to the user. The state variables are
mapped into colors for each iteration to visualize the animated be-
havior of the system in real-time. Then, the user selects one or
more of these systems for mutation and mating to produce the next
generation, and the process repeats. After a number of generations,
genotypes with fairly complex expressions and interesting resulting
behaviors can occur. As an alternative to starting with randomly
generated expressions, the user can hand code an initial set of equa-
tions, such as a wave equation or a reaction-diffusion system, and
begin the evolution from there. This allows many variations of
input systems to be explored.

4.2 Mutating and Mating Lisp Expressions

A recursive mutation scheme is used to mutate genotypes contain-
ing lisp expressions. Each expression is traversed as a hierarchical
structure and each node is in turn subject to possible mutations.
Each type of mutation occurs at different frequencies depending on
the type of node:

1. Any node can mutate into a completely new random expres-
sion.

2. If the node is a scalar value, it may be adjusted by the
addition of some random amount.

3. If the node is a function, it can mutate into a different func-
tion. For example (abs 4) might become (cos 4). If this mutation
occurs, the arguments of the function are also adjusted if necessary
to the correct number and types.

4. An expression can become the argument to a new random
function. If necessary, other arguments are generated at random.
For example, A might become (* 4 .3).

5. Finally, an argument to a function can jump out and become
the new value for that node. For example (* A .3) might become
A. This is the inverse of the previous type of mutation.

Other types of mutations could certainly be implemented, but
these are sufficient for a reasonable balance of slight modifications
and potential for changes in complexity. The overall mutation
frequency is scaled inversely in proportion to the length of the entire
expression. This decreases the probability of mutation at each node
when the parent expression is large so that some stability of the
phenotypes is maintained. To keep evaluation of these expressions
at real-time speeds, estimates of computation times are made, and
slow expressions are automatically eliminated before being used.

Lisp expressions can be mated by crossing over sub-expressions
between two parent expressions. A node in the expression tree of
one parent is chosen at random and replaced by a node chosen at
random from the other parent. This allows two sub-expressions that
have evolved independently to be combined into a single genotype.
Two genotypes are mated by mating each pair of expressions that
specify each initial state and each time derivative.

4.3 Dynamic Simulation

For simplicity, simulations of continuous dynamical systems are
performed using Euler’s method of integration. The differential
equations are approximated for a small discrete time interval At.
For example,

dA

dt F(4)
would be simulated by computing many discrete updates of the
value of A:

A = A+ AtF(A)

When At is smaller, the simulation is more accurate, but more
computation is required. (At = 0.1 is often used.)

Systems can sometimes generate values that exceed the legal
bounds of numerical representation. Values are regularly clamped

Interactive Evolution of Dynamical Systems

to some legal bounds to avoid overflow errors. These particular
discretizations of time and clamping parameters can affect the be-
haviors of some systems. In fact, systems sometimes evolve that
exploit these specific procedures for interesting effects.

Higher order differential equations can also evolve. For ex-
ample, a simple wave propagating system that indirectly specifies
acceleration (d2B/dt?), instead of just velocity (dB/dt), might be
described by:

Ao=.0

By = (noise .1 .4)
dA/dt = (laplacian B)
dB/dt=A

The first derivatives are also included as possible arguments in the
expressions to allow for further possibilities. Resulting behaviors
might not be consistent if At is modified, but for a given time
increment, this can help interesting physical-like systems to occur.
For example, the previous system might instead be described with
one state variable:

Ao = (noise .1 .4)
dA/dt=(+dA/dt (» .1 (laplacian A)))

Similarly, expressions can evolve that counteract the incremental
integration, and specify the next state directly from the current state.

The space of possible dynamical systems can be firther en-
hanced by allowing complex numbers, instead of just real values,
to be included in the state variables and expressions. The operations
in the function set are adjusted to perform on complex quantities as
well as reals, and complex constants and a grid coordinate value,
#C(X Y), are included as possible arguments. (The form #C(r 1)
is used to denote a complex quantity with real part » and imagi-
nary part ¢.) Expressions of real scalar values could theoretically
evolve to perform the same complex operations, but this might not
be likely to occur in a practical timeframe. Various spiral shapes
and fractal structures have been found that use complex arithmetic
[Figures 8 - 11].

5 RESULTS

These two techniques for interactive evolution of dynamical sys-
tems have been implemented on the Connection Machine(®) system
CM-2, a data-parallel supercomputer [6, 19]. One virtual proces-
sor is assigned to each cell in the network so the entire grid can
be processed simultaneously. Identical copies of lookup tables
are distributed into every group of 32 processors so all processors
can perform parallel table lookups using local memory references.
Lisp expression mutations and crossovers are performed on a front-
end computer, and the expressions are evaluated in parallel using
the Connection Machine system and Starlisp. These implemen-
tations allow grid dimensions of up to 256x256 to be simulated
at interactive rates, depending on the complexity of the genotype.
Dimensions of 512x512 and larger can result in less efficient inter-
activity, but are still useful for viewing systems with high levels of
detail.

Figure 4: Cell Shapes

N 'f Y \X
\

Y
S
]
=

Figure 6: Branching Patterns

175

176 Karl Sims

Examples of some different types of CA behaviors are shown
in figures 1 - 3. These were each produced by lookup tables that
were evolved by the methods described in section 3.

Figures 4 - 13 show a variety of continuous dynamical systems
that were evolved by the methods described in the previous section.
For example, figure 4 was produced by the following system of
equations:

A0 = (sin (noise -.14 -.77))
B0=1.99
dA/dt = (+ (+ (laplacian A 2.1)
(if-plusp (— A B) .4 .0)) (x -.38 A))
dB/dt = (+ (laplacian A 4.99) (x -.4 B))

This system proceeds from random noise towards a stable pattern
of circular cell-like shapes. It is often not obvious why a set of
equations produces the behavior that it does, even for relatively
short expressions. Fortunately, a complete understanding of these
equations is not required even by the creator. The expressions
that specify the rules that produced figures 5 - 13 are given in the
Appendix. Genotypes such as these can be interactively evolved
in timescales such as 10 minutes — probably much faster than they
could be designed.

6 FUTURE WORK

Many extensions to these techniques could be explored. Networks
with connectivity other than 2D rectilinear grids might be repre-
sented and evolved. The number of elements and connections
themselves could be subject to mutation and evolution. Dynamical
systems similar to these but in three dimensions, could be simu-
lated, visualized, and evolved, although the size of the volumes that
could be processed in near real-time would have severe limits.

Images from other sources could be incorporated into the lisp
expressions for initial states and differential equations of dynamical
systems. This would allow arbitrary input images to determine the
initial states or various dynamical properties of evolved systems,
and might result in some unusual effects.

Fitness functions other than the interactive perceptual method
could be used to direct the evolution of dynamical systems auto-
matically. Algorithms which try to detect “interesting” behavior of
moving images could be tested by observing the results of simulated
evolutions which use those algorithms as fitness functions. Perhaps
the information from many human selection decisions could be gen-
eralized and used to help define an automatic fitness function.

7 CONCLUSION

The work presented here attempts to combine the benefits of several
techniques: locally specified rules for dynamical systems, evolu-
tion by random variation and non-random selection, and genotypic
representations of variable complexity. It is likely that systems of
evolving biological life have also utilized combinations of these
techniques.

Interactive evolution is a potentially powerful method for cre-
ating and exploring complexity that does not require human under-
standing of the specific process involved. It could be considered
a tool for helping a user with creative explorations, or it might
be considered a system which attempts to “leam” about what is
interesting from a human. In either case, it allows the user and
computer to work together to construct results that neither could
easily produce alone.

Interactive evolution of many types of dynamical systems should
become more practical as computation becomes more powerful and
available, and the techniques presented here will hopefully con-
tribute to creating systems that give rise to emergent behaviors of
higher and higher levels of complexity.

8 Acknowledgments

Thanks to Lew Tucker, Gary Oberbrunner, Matt Fitzgibbon, Jim
Salem, and Peter Schrdder for help and CM graphics software
support. Thanks to Richard Dawkins for the interactive concept.
Thanks to Pattie Maes for encouragement, thanks to Katy Smith
for proofreading, and thanks to Bruce Boghosian for differential
equation tips.

9 APPENDIX

Figure 5, Wave Generators:

A0=033

B0=0.27

CO0 = (log (— 0.5 (grad-mag-squared (noise -0.2 -0.04))) (/ (noise 0.02 0.03) (noise
-0.007 -1.4)))

dA/dt=C

dB/dt = (anisotropic-laplacian (sin A) A 0.9 0.08)

dC/dt = (neighbor-ave (atan dA/dt (laplacian B 1.8)))

Figure 6, Branching Structures:

A0=Y

B0=1.0

CO0 = (+ (negate (noise 0.12 1.9)) Y)

dA/dt = (neighbor-max (neighbor-max C))
dB/dt = (x-grad C)

dC/dt = (neighbor-ave (graddirection B 0.25))

Figure 7, Crack Patterns:

A0 = (— (noise -0.064 1.17) -1.58)
B0 =-0.032

dA/dt = (neighbor-min A)

dB/dt = (laplacian A 4.99)

Figure 8, Globe:
A0 =H#C(X Y)
dA/dt = (+ (/ dA/dt A) (+ (graddirection (expt #C(1.6 0.25) 3.5)-0.42) (x-grad A)))

Figure 9, Fractal Spirals and Arms:

A0 =#C(XY)

dA/dt= (+ (/ (+ (square A) 1.0) A) (+ -0.7 (expt (max (max A (laplacian(log A #C(-1.2
-0.05)) 0.11)) #C(0.21 -0.12)) 3.5)))

Figure 10, Spiral Wave:
A0=#C(XY)
dA/dt = (+ (/ (min A 1.0) A) (+ -0.7 (expt (max A #C(0.2 -0.12)) 3.5)))

Figure 11, Growing Fractal Buds:

A0 =#C(XY)

dA/dt = (+ (/ (+ (square dA/dt) 1.05) A) (+-0.7 (expt (max A #C(0.21 -0.12)) (max A
#C(0.21 -0.12)))))

Interactive Evolution of Dynamical Systems 177

178 Karl Sims

Figure 12, Reaction Diffusion Pattern:

A0 = (negate (noise -0.14 -0.77))

B0 =-0.086

dA/dt = (+ (+ (laplacian A 2.0) (convolve-5-neighbors—constant (- A B) 0.4 0.0 0.027
0.27 0.66)) (» -0.4 A))

dB/dt = (+ (laplacian A 4.99) (» -0.4 B))

Figure 13, Stiped Blobs:
AO = (complex-noise 0.06 1.3)
dA/dt = (+ (/ (+ (square dA/dt) A) A) (+-0.7 (expt (max A #C(0.2 -0.12)) 2.8)))

References

[1] Babloyantz, A., Molecules, Dynamics, and Life: An Introduc-
tion to the Self-Organization of matter, Wiley Interscience,
New York, 1986.

[2] Beremand, M. N., and Blumenthal, T., “Overlapping Genes
in RNA Phage: A new Protein Implicated in Lysis,” Cell,
Vol.18, 1979, 257-266.

[3] Burks, A.W., Essays on Cellular Automata, University of
1linois Press, 1970.

[4] Dawkins, Richard, The Blind Watchmaker, Harlow Logman,
1986.

[5] Goldberg, D. E., Genetic Algorithms in Search, Optimization,
and Machine Learning, 1989, Addison-Wesley Publishing
Co.

[6] Hillis, W. D., “The Connection Machine,” Scientific Ameri-
can, Vol.255, No.6, June 1987.

[7] Holland, J. H., Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, 1975.

[8] Koza, J. R. “Genetic Programming: A Paradigm for Genet-
ically Breeding Populations of Computer Programs to Solve
Problems,” Stanford University Computer Science Depart-
ment Technical Report STAN-CS-90-1314, June 1990.

[9] Koza, J. R. “Evolution and Co-Evolution of Computer Pro-
grams to Control Independently Acting Agents,” Conference
on Simulation of Adaptive Behavior (SAB-90) Paris, Sept.24-
28, 1990.

[10] Langton, C., Artificial Life, Addison-Wesley, 1989.

[11] Lenat, D.B. and Brown,J.S. “Why AM and EURISKO appear
to work,” Artificial intelligence, Vol.23, 1984, 269-294.

[12] Lewis, J. P, “Algorithms for Solid Noise Synthesis,” Com-
puter Graphics, Vol.23, No.3, July 1989, 263-270.

[13] Manneville, P., Boccara, N., Bidaux, R., Vichniac, G., Cel-
lular Automata and the Modeling of Complex Physical Sys-
tems, Proceedings of the Feb. 1989 workshop at Les Houches,
France, Springer-Verlag, 1989.

[14] Meinhardt, H., Models of Biolagical Pattern Formation, Aca-
demic Press, London, 1982.

[15] Murry, J., “How the Lepard Gets its Spots (biological inquiry
into single pattern-formation mechanism in animal coats)”
Scientific American, Vol.258, 1988, p.80.

[16] Perlin, K., “An Image Synthesizer,” Computer Graphics,
Vol.19, No.3, July 1985, 287-296.

[17] Sims, K., “Artificial Evolution for Computer Graphics,” Com-
puter Graphics, Vol.25, No.4, July 1991.

[18] Steele, G., Common Lisp, The Language, Digital Press, 1984.

[19] Thinking Machines Corporation, Connection Machine Model
CM-2 Technical Summary, technical report, May 1989.

[20] Tamayo, P., and Hartman, H., “Cellular Automata, Reaction-
Diffusion Systems, and the Origin of Life,” Artificial Life,
Addison-Wesley, 1989, 105-124.

[21] Toffoli, T., “Cellular Automata as an alternative to (rather
than an approximation of) differential equations in modeling
physics,” Physica 10, North-Holland, Amsterdam, 1984, 117-
127.

[22] Toffoli, T., and Margolus, N., Cellular Automata Machines:
A New Environment for Modeling, MIT Press, 1987.

[23] Turing, A., “The Chemical Basis of Morphogenesis,” Philo-
sophical Transaction of the Royal Society, Vol.237, August
1952, 37-72

[24] Turk, G., “Generating Textures for Arbitrary Surfaces Using
Reaction-Diffusion,” Computer Graphics, Vol.25, No.4, July
1991.

[25] Witkin, A., and Kass, M., “Reaction Diffusion Textures”
Computer Graphics, Vol.25, No.4, July 1991.

[26] Wolfram, S., “Cellular Automata as Models of Complexity,”
Nature, Vol.311, 1984, p.419.

[27] Wolfram, S., Theory and Applications of Cellular Automata,
World Scientific, 1986.

