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Interactive evolution 
of equations for 
procedural models 

Karl Sims 

This paper describes how the evolutionary 
mechanisms of variation and selection can 
be used to "evolve" complex equations 
used by procedural models for computer 
graphics and animation. An interactive 
process between the user and the computer 
allows the user to guide evolving equa­
tions by observing results and providing 
aesthetic information at each step of the 
process. The computer automatically gen­
erates random mutations of equations and 
combinations between equations to create 
new generations of results. This repeated 
interaction between user and computer al­
lows the user to search hyperspaces of pos-

• sible equations without being required to
design the equations by hand or even un­
derstand them. Three examples of these
techniques have been implemented and are
described: procedurally generated pictures
and textures, three-dimensional shapes
represented by parametric equations, and
two-dimensional dynamical systems de­
scribed by sets of differential equations. It
is proposed that these methods have po­
tential as powerful tools for exploring pro­
cedural models and achieving flexible
complexity with a minimum of user input
and knowledge of details.

Key words: Evolution - Genetic algo­
rithms - Procedural models 
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1 Introduction 

Procedural models are increasingly employed in 
computer graphics to create scenes and animations 
having high degrees of complexity. A price paid 
for this complexity is that the user often loses the 
ability to maintain sufficient control over the re­
sults. Procedural models can also have limitations 
because the details of the procedure must be con­
ceived, understood, and designed by humans. The 
techniques presented here contribute towards solu­
tions to these problems by enabling '·evolution" 
of procedural models using interactive "perceptual 
selection." Although they do not give complete 
control over every detail of the results, they do 
permit the creation of a large variety of complex 
entities that are still user directed, and the user 
is not required to understand the underlying equa­
tions involved. 
Many years ago Charles Darwin proposed the 
theory that all species came about via the process 
of natural evolution (Darwin 1859). Evolution is 
now considered not only powerful enough to bring 
about biological entities as complex as humans and 
consciousness, but also useful in simulation to 
create algorithms and structures of higher levels 
of complexity than could easily be built by design. 
Genetic algorithms have proven useful for search­
ing large spaces using simulated systems of varia­
tion and selection (Goldberg I 989; Grenfenstette 
1985, 1987; Schaffer 1989). In The Blind Watchmak­

er, Dawkins has demonstrated the power of Dar­
winism with a simulated evolution of2D branching 
structures made from sets of genetic parameters. 
The user selects the "biomorphs" that survive and 
reproduce to create each new generation (Dawkins 
I 986). Latham and Todd have applied these con­
cepts to help generate computer sculptures rpade 
with constructive solid geometry techniques (Hag­
gerty 1991; Todd and Latham 1991). 
Variations on these techniques are used here with 
the emphasis on the potential of creating textures, 
objects, and motions that are useful in the produc­
tion of computer graphics and animation, and also 
on the potential of using representations that are 
not bounded by a fixed space of possible results. 
The results presented here regarding evolution of 
textures and of dynamical systems can be found 
in additional publications in Sims 1991 a, b. 

1.1 Evolution 

Both biological and simulated evolutions involve 
the basic concepts of genotype and phenotype, and 
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the processes of expression, selection, and repro­
duction with variation. 
The genotype is the genetic information that codes 
for the creation of an individual. In biological sys­
tems, genotypes are normally composed of DNA. 
In simulated evolutions there are many possible 
representations of genotypes, such as strings of bi­
nary digits, sets of procedural parameters, or sym­
bolic expressions. The phenotype is the individual 
itself, or the form that results from the developmen­
tal rules and the genotype. Expression is the process 
by which the phenotype is generated from the 
genotype. For example, expression can be a biolog­
ical developmental process that reads and executes 
the information from DNA strands, or a set of 
procedural rules that use a set of genetic parame­
ters to create a simulated structure. Usually, there 
is a significant amplification of information be­
tween the genotype and phenotype. 
Selection is the process by which the fitness of phe­
notypes is determined. The likelihood of survival 
and the number of new offspring an individual gen­
erates is proportional to its fitness measure. Fitness 
is simply the ability of an organism to survive and 
reproduce. In simulation, it can be calculated by 
an explicitly defined fitness evaluation function, or 
it can be provided by a human observer as it is 
in this work. 
Reproduction is the process by which new geno­
types are generated from an existing genotype or 
genotypes. For evolution to progress there must 

Fig. I. Phenotype selection, genotype reproduction 

Etc. for 
eacb new 

generation. 

be variation or mutations in new genotypes with 
some frequency. Mutations are usually probabilis­
tic as opposed to deterministic. Note that selection 
is, in general, nonrandom and is performed on phe­
notypes, but variation is usually random and is 
performed on the corresponding genotypes (Fig. 1 ). 
The repeated cycle of reproduction with variation 
and selection of the most fit individuals drives the 
evolution of a population towards higher and high­
er levels of fitness. 
Sexual combination can allow genetic material of 
more than one parent to be mixed together in some 
way to create new genotypes. This permits features 
to evolve independently and later be combined into 
an individual genotype. Although it is not neces­
sary for evolution to occur, it is a valuable practice 
that can enhance progress in both biological and 
simulated evolutions. 

1.2 Genetic algorithms 

Genetic algorithms were first developed by Hol­
land (1975) as robust searching techniques in which 
populations of test points are evolved by random 
variation and selection. They have become widely 
used in a number of applications to find optima 
in very large search spaces (Grenfenstette 1985, 
1987; Schaffer t 989). 
Genetic algorithms differ from the examples pre­
sented in this paper in that they usually use an 
explicit analytic function to measure the fitness of 
phenotypes. Since it is difficult to measure the aes­
thetic visual success of simulated objects or images 
automatically, here the fitness is provided interacti­
vely by a human user based on visual perception. 
Population sizes used for genetic algorithms are 
usually fairly large (100 to 1000 or more) to allow 
searching of many test points and surpassing local 
optima. At each generation, many individuals sur­
vive and reproduce to create the next generation. 
For the examples presented in this paper, the suc­
cess of a solution is dependent on human opinion; 
therefore there is no single global optimum. Many 
local optima are potentially interesting solutions. 
For this reason, and also because of user interface 
practicality, a smaller population size has been 
used (4-20), and only one or two individuals are 
chosen to reproduce for each new generation. 
Genotypes used in genetic algorithms traditionally 
consist of fixed-length character strings used by 
fixed expression rules. This is appropriate for 
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searching predefined dimensional spaces for opti­
mum solutions, but these restrictions are some­
times limiting. Koza (1992) has used hierarchi­
cal lisp expressions as genotypes such that the di­
mensionality of the search space itself can be ex­
tended to solve problems such as artificial ant navi­
gation and game strategies successfully. Discovery 
systems, such as AM and Eurisko, also use a form 
of mutating lisp programs (Lenat and Brown 1984). 
The examples presented here also use genotypic 
representations composed of lisp expressions, al­
though the set of functions used includes various 
vector transformations, noise generators, and im­
age processing operations, as well as standard nu­
merical functions. 
In the next section, techniques for generating, mu­
tating, and combining symbolic lisp expressions to 
explore hyperspaces of possible equations are de­
scribed. In Sect. 3, 4, and 5, examples are presented 
that use these techniques to evolve 2D textures, 
3D parametric objects, and 2D dynamical systems. 
Finally, results are discussed, suggestions are made 
for future work, and conclusions are given. 

2 Lisp expressions as genotypes 

Traditional genotypes that use fixed-length strings 
of parameters or digits and fixed expression rules 
are limited by having solid boundaries on the set 
of possible phenotypes. There is no possibility for 
the evolution of a new developmental rule or a 
new parameter. There is no way for the genetic 
space to be extended beyond its original definition 
- the N-dimensional genetic space will remain only
N-dimensional. To surpass this limitation, it is de­
sirable to include procedural information in the
genotype instead of just parameter data, and the
procedural and data elements of the genotype
should not be restricted to a specific structure or
size.
Hierarchical lisp expressions are used as genotypes
in an attempt to meet these needs. A set of lisp
functions and a set of argument generators are used
to create arbitrary expressions that can be mutated,
evolved, and evaluated to generate phenotypes.
Some mutations can create larger expressions with
new parameters and extend the space of possible
phenotypes, while others just adjust existing parts
of the expression.
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Equations used by procedural models can often 
be represented by one or more lisp expressions. 
These expressions or sets of expressions become 
the genotypes for evolvable procedural models. For 
example, a texture-generating procedure can be de­
scribed by an expression that calculates a color 
for each pixel coordinate (X, Y), and a procedure 
for generating a 3D parametric surface can be de­
scribed by an equation that calculates a 3D vertex 
location for each parameteric variable pair (U, 

V). 
For each application, a function set defines a set 
of primitive operations from which lisp expressions 
can be assembled. A basic function set might con­
sist of some simple common lisp operations:+, - , 
*, /, mod, round, min, max, abs, expt, log, sin, and 
cos (Steele 1984). Function sets can be extended 
or adjusted to give various hyperspaces of possible 
results. 
To begin a session of interactive evolution, an ini­
tial population of genotypes consisting of simple 
randomly generated lisp expression is created. 
These are assembled by first choosing a function 
at random from the function set and then generat­
ing as many arguments at random as that function 
requires. Arguments can be of several types: con­
stant scalar values, three element vectors, variables 
such a X or Y pixel coordinates or additional ran­
dom expressions generated recursively. The initial 
genotypes of the population are then expressed by 
performing the calculations described in their lisp 
expressions, and the resulting phenotypes are dis­
played to the user for interactive selection. The best 
individuals are then selected to survive and repro­
duce to create the next generation, and the process 
repeats with the new population. 

2.1 Mutating symbolic expressions 

Symbolic expressions must be reproduced with 
mutations for their evolution to progress. There 
are several properties of symbolic expression muta­
tion that are desirable. Expressions should often 
be only slightly modified, but sometimes signifi­
cantly adjusted in structure and size. Large random 
changes in genotype usually result in large jumps 
in phenotype that are less likely to be improve­
ments, but are necessary for extending the expres­
sion to more complex forms. 
A recursive mutation scheme is used to mutate ex­
pressions. Lisp expressions are traversed as tree 
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structures, and each node is in turn subject to pos­
sible mutations. Each type of mutation occurs at 
different frequencies, depending on the type of 
node: 

1. Any node can mutate into a new random expres­
sion. This allows for large changes and usually re­
sults in a fairly significant alteration of the pheno­
type.
2. If the node is a scalar value, it can be adjusted
by the addition of some random amount.
3. If the node is a vector, it can be adjusted by
adding random amounts to each element.
4. If the node is a function, it can mutate into a
different function. For example (absX) might be­
come (cosX). If this mutation occurs, the arguments
of the function are also adjusted if necessary to
the correct number and types.
5. An expression can become the argument to a
new random function. Other arguments are gener­
ated at random if necessary. For example, X might
become ( * X .3).
6. An argument to a function can jump out and
become the new value for that node. For example,
( * X .3) might become X. This is the inverse of the
previous type of mutation.
7. Finally, a node can become a copy of another
node from the parent expression. For example,
( + (absX)( * Y.6)) might become (+((abs 
( * Y.6))( * Y.6)). This causes effects similar to those
caused by mating an expression with itself. It al­
lows subexpressions to duplicate themselves within
the overall expression.
Other types of mutations could certainly be imple­
mented, but these are sufficient for a reasonable
balance of slight modifications and potential for
changes in complexity. Figure 2 shows a parent ob­
ject in the upper left with 19 offspring created by
random mutations of its equations. Note that some
mutations cause little or no variation from the par­
ent, while others cause significant alterations.
It is preferable to adjust the mutation frequencies
such that a decrease in complexity is slightly more
probable than an increase. This prevents the ex­
pressions from drifting towards large and slow
forms without necessarily improving the results.
They should still easily evolve towards larger sizes,
but a larger size should be due to selection of im­
provements instead of random mutations with no
effect. The overall mutation frequency is scaled in­
versely in proportion to the length of the parent
expression. This decreases the probability of muta-

tion at each node when the parent expression is 
large so that some stability of the phenotypes is 
maintained. 
The evaluation of expressions and display of the 
resulting images can require significant calculation 
times as expressions increase in size. To keep image 
evolution at interactive speeds, estimates of com­
pute speeds are calculated for each expression by 
summing precomputed runtime averages for each 
function. Slow expressions are eliminated before 
ever being displayed to the user. New offspring 
with random mutations are generated and tested 
until satisfactory expressions occur. If necessary, 
this technique could also be performed to keep 
memory usage to a minimum. 

2.2 Mating symbolic expressions 

Symbolic expressions can be reproduced with sex­
ual combinations to allow characteristics from sep­
arately evolved individuals to be mixed into a sin­
gle individual. A node in the expression tree of 
one parent is chosen at random and replaced by 
a node chosen at random from the other parent. 
The new expression is checked for legal syntax and 
if necessary more matings are performed until a 
legal expression results. This crossing over tech­
nique allows any part of the structure of one parent 
to be inserted into any part of the other parent 
and allows two subexpressions that have evolved 
independently to be combined into one geno­
type. 

2.3 Genetic cross dissolves 

Another technique for combining expressions is 
achieved by performing "genetic cross dissolves" 
between two expressions. A new expression is 
created by copying the nodes of the original ex pres­
sions where they are identical but interpolating be­
tween the nodes where they are different. Results 
of differing expression branches are first calculated 
and interpolated and then used by the remaining 
parts of the expression. If the two expressions have 
different root nodes, the dissolve will cause a 
"fade" from one to the other, but if only parts 
within their structures are different, interesting 
transformations can occur as the interpolation pro­
ceeds. For example, the two simple expressions 
( * X Y) and ( * X .6) could be dissolved to give the

469 



------------------------"�isual­
(�on1putcr 

expression ( * X (dissolve Y .6 a)) where a is varied 
to perform the interpolation. 
This technique uses the existing genetic representa­
tion of evolved procedural models to generate in­
betweens for a smooth transition from one to an­
other. It is an example of the usefulness of an alter­
nate level of control given by the underlying genetic 
information. A series of frames from a genetic cross 
dissolve between two parametric objects is shown 
in Fig. 3. 
Repeated interpolations can be a useful method 
for creating animation from a series of evolved 
structures. "Genetic splines" can even be used to 
give smoother interpolation between multiple con­
trol genotypes. 
The following sections will present three specific 
examples of procedural models the equations of 
which are represented as lisp expressions so they 
can be mutated, mated, and interactively evolved. 

3 Evolving pictures and textures 

The first example involves the procedural genera­
tion of textures by symbolic expressions that de­
scribe color as a function of the X and Y pixel 
coordinates: 

c<R,G,m = F(X, Y) 

Equations that perform this mapping are evolved 
using a function set containing vector transforma­
tions, procedural noise generators, and image pro­
cessing operations, as well as some standard com­
mon lisp functions: 

+, - , *, /, mod, round, min, max, abs, expt, log, 
and, or, xor, sin, cos, atan, if, dissolve, hsv-to-rgb, 
vector, transl arm-vector, bw-noise, color-noise, 
warped-bw-noise, warped-color-noise, blur, band­
pass, grad-mag, grad-dir, bump, ifs, warped-ifs, 
kaleidoscope, warp-abs, warp-rel, warp-by-grad. 

Each function takes a certain number of arguments 
and calculates and returns an image of scalar (b/w) 
or vector (rgb color) values. 
Noise generators can create solid scalar and vector 
noise at various frequencies with random seeds 
passed as arguments so that specific patterns can 
be preserved between generations (Fig. 4f; Lewis 
1989). The warped versions of functions take input 
coordinates as arguments instead of pixel coordi­
nates, allowing the result to be distorted by an 
arbitrary inverse mapping function (Fig. 4h). Boo-
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lean operations (and, or, and xor) operate on each 
bit of floating-point numbers and can cause fractal­
like grid patterns (Fig. 4e). Versions of sin and cos 
which normalize their results between 0.0 and 1.0 
instead of - 1.0 and 1.0 can be useful. Some func­
tions such as blurs, convolutions, and those that 
use gradients also use neighboring pixel values to 
calculate their results (Fig. 4 g). Band-pass convolu­
tions are performed using a difference of Gaussians 
filter which can enhance edges. Iterative function 
systems (ifs) can generate fractal patterns and 
shapes, and a kaleidoscope function generates trian­
gular patterns. 
It might be interesting to include many other func­
tions in this function set, but those given have pro­
vided for a fairly wide variety of resulting images. 
Details of the specific implementations of each 
function are not given here because they are not 
as important as the evolution process itself. Most 
of the functions have been adapted either to coerce 
the arguments into the required types, or to per­
form differently according to the argument types 
given to them. Arguments to certain functions can 
be restricted optionally to some subset of the avail­
able types. For the most part these functions re­
ceive and return images, and could be considered 
as image processing operations. Expressions made 
from these functions are simply evaluated to pro­
duce images. Figure 4 shows examples of some sim­
ple expressions and their resulting images. 
Interactive evolution of these expressions is per­
formed by first generating a population of simple 
random expressions and displaying them to the 
user for selection. The expressions of images se­
lected by the user are reproduced with mutations 
for each new generation such that more and more 
complex expressions and more perceptually inter­
esting images can occur. Figure 5 was generated 
from this expression: 

(sin ( + ( - (grad-direction (blur (if (hsv-to-rgb 
(warped-color-noise (vector 0.57 0.7 3 0.92) (/ 1.85 
(warped-color-noise X Y 0.02 3.08)) 0.11 2.4)) 
(vector 0.54 0.73 0.59) (vector 1.06 0.82 0.06)) 3.1) 
1.46 5.9) (hsv-to-rgb (warped-color-noise Y (/ 4.5 
(warped-color-noise Y (/ X }) 2.4 2.4)) 0.02 2.4))) 
X)) 

Note that expressions only five or six lines long 
can generate images of fair complexity. Fortunate­
ly, analysis of expressions is not required when us­
ing these methods to create them. Users usually 
stop attempting to understand why each expres-



- ..,\isu�,t
( ... «un1n1tcr 

2 3 

5 6 

Fig. 2 Parent and 19 mutations 

Fig. 3. Frames from a ·• genetic cross dissolve" 

Fig. 4a-i. Simple image expression examples reaching left to 
right, top 10 bottom: a X; b Y; c (abs X): d (mod X (abs Y)): 
c (and X Y): f (bw-noise .2 2); g (color-noise. I 2): h (grad-direc­
tion (bw-noise .15 2) .0 .0): i (warped-color-noise ( • X .2) 
Y. I 2)

Fig. 5. Evolved texture 

Fig. 6. Frame from ·• Primordial Dance" 

Fig. 7. Processed photograph 

Fig. 8. Parametric surface 

Fig. 9. Shell shape 

Fig. 10. Folded structure 

4 

7 

sion generates each image. Figure 6 was also gener­
ated in this way. Its corresponding expression, and 
others, are included in the appendix. 

3.1 Volume textures, animation, 
and image processing 

Other procedural models can be evolved with vari­
ations on the methods already described. Volume 
textures, animated textures, and image processing 
functions can be represented by adding to the set 
of input variables that are included in the expres­
sions. 
Volume textures can be described by adding a third 
variable, Z, to the list of available arguments. This 
enables functions to evolve that calculate colors 
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for each point in (X, Y,Z) space. The junction set 
is adjusted for better results; 20 functions that 
require neighboiring pixel values such as convolu­
tions and warps are removed, and 3 0 solid noise 
generating functions are added. These expressions 
are more difficult to visualize because they encom­
pass all of 3 0 space. They are evaluated on the 
surfaces of spheres and planes for fast previewing 
and selection. Evolved volume expressions can 
then be incorporated into procedural shading func­
tions to texture arbitrary objects. This process al­
lows complex volume textures such as those de­
scribed in Peachy (1985) and Perlin (1985) to be 
evolved without requiring specific equations to be 
understood or carefully adjusted by hand. 
Animations of textures can be created by perform­
ing genetic cross dissolves between evolved static 
textures as described, but another method for 
evolving animated textures is to include an input 
variable, Time, in the expressions. Functions of X, 
Y, and Time can then evolve such that moving im­
ages are produced when the value of Time is 
smoothly varied. 
An input image can also be added to the list of 
available arguments to make functions of X, Y, and 
Image. This allows creation of complex image pro­
cessing and warping functions that compute new 
images from given input images. Figure 7 was 
created from an input image of a human figure. 
The short film Primordial Dance (Sims 1991 c) was 
created using a variety of these methods. 

4 Evolving 3 D shapes 

The second example of interactive evolution in­
volves a procedural model for creating 3 0 para­
metric surfaces. The shape of a surface is described 
by an arbitrary function that calculates a 3 0 posi­
tion as a function of two parametric variables U 
and V: 

ftx.Y.z> = F(U, V) 

The form of this equation is somewhat similar to 
that of the first application, except U and V are 
the input variables to the expressions instead of 
X and Y, and the expressions calculate 30 coordi­
nates instead of colors. The function set normally 
used here avoids functions that cause discontinui­
ties, but includes various functions for transform­
ing between coordinate systems and performing 
3 0 manipulations and distortions: 
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+, -, *, /, min, max, abs, negate, sin, cos, sqrt, 
square, expt, dissolve, vector, noise, warped-noise, 
cyl-to-xyz, sph-to-xyz, rotate, vortex. 

As examples, the expression (vector U V.O) would 
create a simple flat grid on the X, Y plane, and 
the expression (sph-to-xyz (vector 1.0 U JI)) would 
produce a unit sphere. A fairly wide variety of com­
plex shapes can be described by longer expressions 
assembled from this set of functions. The shape 
of the object in Fig. 8 was interactively evolved, 
and was generated by the following expression: 

(rotate (cyl-to-xyz (vector ( - -0.19 U) V V)) ( * 
(vector -0.007 0.4 0.87) U) (noise - 0.25 1 .37)) 

The shapes in Figs. 9-11 were also created in this 
way and the expressions that generated them are 
listed in the appendix. 
Procedural textures for the surfaces of parametric 
shapes can also be described by lisp expressions 
and included in these genotypes. An expression 
that calculates a surface color for each U, Vis eval­
uated at each surface element during the rendering 
process. These are similar to the texture expres­
sions already described, but they are evaluated on 
the surfaces of objects instead of on the flat image 
plane. Textures of surfaces can be evolved either 
simultaneously with the shape or independently. 
Both the shape expression and the texture expres­
sion are subjected to mutations during reproduc­
tion, but either can be made stable· by selective 
mutation prevention. The procedurally generated 
textures and colors of the objects in Figs. 8-11 were 
interactively evolved. 
Parametric surfaces are polygonalized for render­
ing by evaluating the expression at small regular 
intervals within some range of the parametric vari­
ables, such as 128 x 128 discrete samples of U and 
V between - 1.0 and 1.0. The shapes shown were 
polygonalized and rendered in this way. A method 
that generates polygons or patches more adaptive­
ly, or even renders the parametric surface directly, 
might be helpful, but this simple approach was cho­
sen for its ease of implementation. 
An alternate method of rendering parametric sur­
faces is to create a small sphere at each U, V sample 
as shown in Fig. 11. This allows the structure of 
discontinuous or tangled shapes to be visualized 
and is sometimes advantageous. When using this 
rendering method, discontinuous functions such as 
mod, round, and, or, and xor can be added back 
to the function set. 
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In some cases the polygonalization and rendering 
of complex parametric surfaces can not be per­
formed in real-time to allow as much interactive 
speed as might be desired. A quick display of vertex 
points can often give enough initial information 
about the shapes to make selections and allow effi­
cient interactivity. 

5 Evolving dynamical systems 

The third and final example of interactive evolution 
of procedural models involves 2 D dynamical sys­
tems described by systems of equations. ln this ap­
plication, several cooperating lisp expressions are 
used to determine the initial states and time deriva­
tives of state variables of dynamical systems. For 
example, a system containing two quantities, A and 
B, at each grid location is described by four equa­
tions: 

Ao=FAo(X, Y) 

Bo
= Fso (X, Y) 

d A/dt =FdA (A, B) 

dB/dt=F,18(A,B) 

FA o and F80 are functions that determine the initial 
values for each element of A and B from their grid 

Fig. 11. Visualizing with spheres 

Fig. 12. Cell shapes 

Fig. 13. Wave generators 

Fig. 14. Branching patterns 

Fig. 15. Fractal structures 

coordinates (X, Y). FdA and Fd8 are functions that 
determine the rate of change for each element of 
A and Busing the current state of the system. Arbi­
trary functions for FAo, F80 , FdA • and Fds, are speci­
fied by lisp expressions that can vary in size, struc­
ture, and behavior. A genotype contains one lisp 
expression for each of these functions. For example, 
a genotype that would describe a simple reaction­
difTusion-]jke system of two chemicals that diffuse 
and inhibit each other might be: 

A0 =(noise .82) 

B0 =(noise . 9 3) 

d A/dt=(- (laplacian A) B) 

d B/d l = ( - (laplacian B) A) 

The set of functions used to compose these lisp 
expressions contains the usual common lisp func­
tions, but also contains operations that can per­
form various convolutions, and find first- and sec­
ond-order spatial derivatives: 

+, - , *, /, mod, round, min, max, abs, expt, log, 
sin, cos, atan, negate, sqrt, square, dissolve, if­
p/usp, x-grad, y-grad, grad-mag, grad-in-direction, 
grad-directio11, neighbor-min, neighbor-max, 
neighbor-ewe, convolve-with-mask, curl. /ap/acian, 
anisotropic-/ap/acian. 
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The function set for the initial state expressions 
also contains a noise procedure, as used in the tex­
tures application above. 
An initial population of dynamical systems is creat­
ed by generating simple random expressions for 
the initial state and time derivatives of each state 
variable. The corresponding simulations are dis­
played to the user by mapping the state variables 
into colors for each iteration so the behavior of 
the system can be observed as it progresses. Then, 
the user selects one or more of these systems for 
mutation and/or mating to produce the next gener­
ation, and the process repeats. After a number of 
generations, genotypes with fairly complex expres­
sions and interesting resulting behaviors can occur. 
As an alternative to starting with randomly gener­
ated expressions, the user can hand-code an initial 
set of equations, such as a wave equation or a reac­
tion-diffusion system (Turk I 991; Witkin 1991 ), 
and begin the evolution from there. This can allow 
unexpected variations of initial input systems to 
be explored. 
For simplicity, simulations of continuous dynami­
cal systems are performed using Euler's method 
of integration. The differential equations are ap­
proximated for a small discrete time interval LI t. 

For example, 

dA 
=F(A) 

dt 

would be simulated by computing many discrete 
updates of the value of A: 

A' =A +A tF(A) 

When LI t is smaller, the simulation is more accu­
rate, but more computation is required. (LI t = 0.1 
is often used.) 
Systems can sometimes generate values that exceed 
the legal bounds of numerical representation. 
Values are regularly clamped to some legal bounds 
to avoid overflow errors. These particular discreti­
zations of time and clamping parameters can affect 
the behaviors of some systems. In fact, systems that 
exploit these specific procedures for interesting ef­
fects sometimes evolve. 
The first derivatives are also included as possible 
arguments in the expressions. Resulting behaviors 
might not be consistent if LI t is modified, but for 
a given time increment, this can help interesting 
physical-like systems to occur. 
The space of possible dynamical systems can be 
further enhanced by allowing complex numbers, 
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instead of just real values, to be included in the 
state variables and expressions. The operations in 
the function set are adjusted to perform on com­
plex quantities as well as reals, and complex con­
stants and a grid coordinate value, # C(X Y), are 
included as possible arguments. (The form #C(ri) 
is used to denote a complex quantity with real part 
r and imaginary part i.) Various spiral shapes and 
fractal structures that use complex arithmetic can 
be found (Fig. 15). 
Figures 12-15 show the results after a number of 
iterations of some dynamical systems that were 
evolved by these methods. Figure 12 was produced 
by the following system of equations: 

AO=(sin (noise -.14 -.77)) 

BO= 1.99 

dA/dt=( + ( + (laplacian A 2.1) 

(if-plusp (-AB) .4 .0))( * -.38 A)) 

d B/dt=( + (laplacian A 4.99)( * -.4 B)) 

This system proceeds from random noise towards 
a stable pattern of circular cell-like shapes. Again, 
it is often not obvious why a set of equations pro­
duces the behavior is does, even for relatively short 
expressions. Fortunately, a complete understand­
ing of these equations is not required even by the 
creator. The expressions that specify the equations 
that produced Figs. 13-15 are given in the Appen­
dix. 

6 Results 

The three examples of interactive evolution de­
scribed have been implemented on the Connection 
Machine® system CM-2, a data parallel supercom­
puter (Hillis 1987). The parallel implementation de­
tails will not be discussed in detail here, but each 
application is reasonably suited for highly parallel 
representation and computation. Lisp expression 
mutations and combinations are performed on a 
front-end computer and the expressions for each 
application are evaluated on the Connection Ma­
chine system in parallel with one virtual processor 
per data element (pixels, coordinates, or grid cells). 
This usually allows calculation and display of re­
sults to be performed fast enough for efficient inter­
activity. 
Many of the procedurally generated results shown 
here were evolved in timescales of only a small 
number of minutes - probably much faster than 
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they could be designed. These methods allow pro­
cedural models to be explored efficiently and with 
the very simple interface of just choosing from sam­
ples. 
Two different approaches of user selection behav­
ior are possible. The user can have a goal in mind 
and select samples that are closer to that goal until 
it is hopefully reached. Alternatively, the user can 
follow the more interesting samples as they occur 
without attempting to reach any specific goal. The 
latter approach often leads to more interesting re­
sults. 
These various evolved products can be saved in 
the concise form of the final genotypic expression 
itself. This facilitates keeping large libraries of 
evolved forms which can then be used to contribute 
to further evolutions by mating them with other 
forms or further evolving them in new directions. 

7 Future work 
Many other procedural models could potentially 
be explored using these techniques. Other types of 
grammatical systems that describe generative pro­
cesses for creating various entities could also be 
subjected to mutation, mating, and interactive se­
lection. Procedures could be explored that control 
distributions or generate motions for many ele­
ments such as systems of particles or brush strokes. 
Algorithms that use rules to construct, arrange, 
and combine 3 D geometric primitives could also 
be evolved. These tools might also be valuable in 
domains beyond computer graphics for the design 
of various items such as fonts, clothing, or even 
sounds. 
Several variations on these methods for artificial 
evolution might make interesting experiments. One 
could attempt to automatically evolve symbolic ex­
pressions that could generate simple specific goals. 
A differencing function could be used to calculate 
a fitness based on how close a test genotype was 
to the goal, and the goal could be searched for 
by automatic selection. Then, interactive selection 
could be used to evolve further results starting from 
there. 
Large amounts of information of all the human 
selection choices of many evolutions could be 
saved and analyzed. A difficult challenge would 
be to create a system that could generalize and 
"understand" what makes a result visually success­
ful, and even generate other images that meet these 
learned criteria. 

Combinations of random variations and nonran­
dom variations using learned information might 
be helpful. If a user picks phenotypes in a certain 
direction from the parent, mutations for the next 
generation might have a tendency to continue in 
that same direction, giving "evolutionary momen­
tum." 
Also, combinations of evolution and the ability to 
apply specific adjustments to the genotype might 
allow more user control of evolved results. Auto­
matic "genetic engineering" could permit a user 
to make requests that might, for example, make 
an object more blue, or a texture more grainy. 

8 Conclusion 
Interactive evolution of equations for procedural 
models has been demonstrated to be a potentially 
powerful tool for the creation of textures, objects, 
and dynamical systems for use in computer graph­
ics and animation. Reproduction with random 
variations and survival of the visually interesting 
can lead to useful results. Representations for geno­
types that are not limited to fixed spaces and can 
grow in complexity have shown to be worth­
while. 
Evolution is a method for creating and exploring 
complexity that does not require human under­
standing of the specific process involved. This pro­
cess of interactive evolution could be considered 
a system for helping the user with creative explora­
tions, or it might be considered a system which 
attempts to "learn" about human aesthetics from 
the user. In either case, it allows the user and com­
puter to work together interactively in a new way 
to produce results that neither could easily produce 
alone. 
An important limiting factor in the usefulness of 
interactive evolution is that samples need to be 
generated quickly enough that it is advantageous 
for the user to choose from random samples rather 
than to adjust new samples carefully by hand. The 
computer needs to generate and display samples 
fast enough to keep the user interested while select­
ing amongst them. As computation becomes more 
powerful and available, these methods should be­
come advantageous in more and more domains. 
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Appendix 
Figure 6, Frame from "Primordial Dance:" 

(dissolve (/ (warped-bw-noise (expt (blur (kaleidoscope 2.1 6.9 Y 
(vector 0.96 0.42 0.51 )) 7.6) 0.12) 0.5 0.17 9.6) (vector 0.49 0.53 
0.92)) (color-grad (warped-bw-noise (expt (blur (kaleidoscope 1.6 
6.9 Y(vector 0.30 0.45 -0.14)) 3.8) 0.12) (bump (ifs 4.5 0.82 0.22 
3.8 0.45 0.049 3. 7 I 6.1 -0.87 2.3 0.10 0.46 -5.0 7 .6 12.6 0.05) 
6.4 0.007 (vector 0.98 0.12 0.18) (vector 0.11 0.59 0.014) 1.07 
8.1 12.1) 0.179.6) 2.8 2.0 (vector 0.47 0.04 0.22) 2.0) 0.48) 

Figure 7, Processed photograph: 
(cos ( + ( + (cos ( + (warp-by-grad Image Image 0.34 I. I 2)(vec­
tor .28 .40 .46))) Y) Image)) 
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Figure 9, Shell shape: 
(rotate (dissolve (cyl-to-xyz (vector -0.95 UV)) (vector 0.46 0.16 
-0.33) (negate U)) ( * (vector -0.006 -0.008 1.05) 2.29) U) 

Figure 10, Folded structure: 
(rotate (dissolve (cyl-to-xyz (vector (- -0.19 U) V V)) (rotate 
(vector -0.77 -0.11 0.017) (vector 1.8 0.42 2.2) ( • (- U -1.9) 
1.18)) (negate (warped-noise-0.Q7 V 0.43 -0.24))) ( • (vector 
-0.007 0.4 0.87) 1.14)(noise -0.25 1.37))

Figure 11, Visualizing with spheres: 
(negate (cyl-to-xyz ( - (vector 0.027 0.28 U) ( + (rotate (vector 
-0.063 1.82 -0.21) (if-plusp V (vector 0.24 -1.15 -0.98)
(warped-noise V V(warped-noise U (a tan 0.45 U) -1.02 -0.011)
1.87 -0.097)) (mod V -1.38)) (vector (and (xor (- (/ U U)
U) -0.95) (warped-noise -0.019 -1.0 1.84 -1.29)) U (square
U))))))

Figure 13, Wave generators: 
A0=0.33 
80= 0.27 
C0=(log (- 0.5 (grad-mag-squared (noise -0.2 -0.04))) (/ (no­
ise 0.02 0.03) (noise -0.007 -1.4))) 
dA/dt=C 

d 8/d t = (anisotropic-laplacian (sin A) A 0.9 0.08) 
dC/dt =(neighbor-ave (a tan d A/dt (Laplacian B 1.8))) 

Figure I 4, Branching patterns: 
AO=Y 
BO= 1.0 
CO=(+ (negate(noise 0.12 1.9)) Y) 
d A/d t = (neighbor-max (neighbor-max C)) 
d 8/d t = (x-grad C) 
d C/d t = (neighbor-ave (grad-direction B 0.25)) 

Figure 15, Fractal structures: 
AO= #C(X Y) 
d A/d t = ( + (/ ( + (square A) 1.0) A) ( + -0.7 (expt (max (max 
A (laplacian (log A * C ( -1.2 -0.05)) 0.11 )) * C (0.21 -0.12)) 
3.5))) 
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