
.,., 1 it---------------,
(cunputcr

Interactive evolution
of equations for
procedural models

Karl Sims

This paper describes how the evolutionary
mechanisms of variation and selection can
be used to "evolve" complex equations
used by procedural models for computer
graphics and animation. An interactive
process between the user and the computer
allows the user to guide evolving equa­
tions by observing results and providing
aesthetic information at each step of the
process. The computer automatically gen­
erates random mutations of equations and
combinations between equations to create
new generations of results. This repeated
interaction between user and computer al­
lows the user to search hyperspaces of pos-

• sible equations without being required to
design the equations by hand or even un­
derstand them. Three examples of these
techniques have been implemented and are
described: procedurally generated pictures
and textures, three-dimensional shapes
represented by parametric equations, and
two-dimensional dynamical systems de­
scribed by sets of differential equations. It
is proposed that these methods have po­
tential as powerful tools for exploring pro­
cedural models and achieving flexible
complexity with a minimum of user input
and knowledge of details.

Key words: Evolution - Genetic algo­
rithms - Procedural models

466

1 Introduction

Procedural models are increasingly employed in
computer graphics to create scenes and animations
having high degrees of complexity. A price paid
for this complexity is that the user often loses the
ability to maintain sufficient control over the re­
sults. Procedural models can also have limitations
because the details of the procedure must be con­
ceived, understood, and designed by humans. The
techniques presented here contribute towards solu­
tions to these problems by enabling '·evolution"
of procedural models using interactive "perceptual
selection." Although they do not give complete
control over every detail of the results, they do
permit the creation of a large variety of complex
entities that are still user directed, and the user
is not required to understand the underlying equa­
tions involved.
Many years ago Charles Darwin proposed the
theory that all species came about via the process
of natural evolution (Darwin 1859). Evolution is
now considered not only powerful enough to bring
about biological entities as complex as humans and
consciousness, but also useful in simulation to
create algorithms and structures of higher levels
of complexity than could easily be built by design.
Genetic algorithms have proven useful for search­
ing large spaces using simulated systems of varia­
tion and selection (Goldberg I 989; Grenfenstette
1985, 1987; Schaffer 1989). In The Blind Watchmak­

er, Dawkins has demonstrated the power of Dar­
winism with a simulated evolution of2D branching
structures made from sets of genetic parameters.
The user selects the "biomorphs" that survive and
reproduce to create each new generation (Dawkins
I 986). Latham and Todd have applied these con­
cepts to help generate computer sculptures rpade
with constructive solid geometry techniques (Hag­
gerty 1991; Todd and Latham 1991).
Variations on these techniques are used here with
the emphasis on the potential of creating textures,
objects, and motions that are useful in the produc­
tion of computer graphics and animation, and also
on the potential of using representations that are
not bounded by a fixed space of possible results.
The results presented here regarding evolution of
textures and of dynamical systems can be found
in additional publications in Sims 1991 a, b.

1.1 Evolution

Both biological and simulated evolutions involve
the basic concepts of genotype and phenotype, and

The Vb,ual Compull.!r t 199:\} 9:466 -176
1 Springcr-Vc-rl�1g 199_1,

-·�,isual
(,401uputcr

the processes of expression, selection, and repro­
duction with variation.
The genotype is the genetic information that codes
for the creation of an individual. In biological sys­
tems, genotypes are normally composed of DNA.
In simulated evolutions there are many possible
representations of genotypes, such as strings of bi­
nary digits, sets of procedural parameters, or sym­
bolic expressions. The phenotype is the individual
itself, or the form that results from the developmen­
tal rules and the genotype. Expression is the process
by which the phenotype is generated from the
genotype. For example, expression can be a biolog­
ical developmental process that reads and executes
the information from DNA strands, or a set of
procedural rules that use a set of genetic parame­
ters to create a simulated structure. Usually, there
is a significant amplification of information be­
tween the genotype and phenotype.
Selection is the process by which the fitness of phe­
notypes is determined. The likelihood of survival
and the number of new offspring an individual gen­
erates is proportional to its fitness measure. Fitness
is simply the ability of an organism to survive and
reproduce. In simulation, it can be calculated by
an explicitly defined fitness evaluation function, or
it can be provided by a human observer as it is
in this work.
Reproduction is the process by which new geno­
types are generated from an existing genotype or
genotypes. For evolution to progress there must

Fig. I. Phenotype selection, genotype reproduction

Etc. for
eacb new

generation.

be variation or mutations in new genotypes with
some frequency. Mutations are usually probabilis­
tic as opposed to deterministic. Note that selection
is, in general, nonrandom and is performed on phe­
notypes, but variation is usually random and is
performed on the corresponding genotypes (Fig. 1).
The repeated cycle of reproduction with variation
and selection of the most fit individuals drives the
evolution of a population towards higher and high­
er levels of fitness.
Sexual combination can allow genetic material of
more than one parent to be mixed together in some
way to create new genotypes. This permits features
to evolve independently and later be combined into
an individual genotype. Although it is not neces­
sary for evolution to occur, it is a valuable practice
that can enhance progress in both biological and
simulated evolutions.

1.2 Genetic algorithms

Genetic algorithms were first developed by Hol­
land (1975) as robust searching techniques in which
populations of test points are evolved by random
variation and selection. They have become widely
used in a number of applications to find optima
in very large search spaces (Grenfenstette 1985,
1987; Schaffer t 989).
Genetic algorithms differ from the examples pre­
sented in this paper in that they usually use an
explicit analytic function to measure the fitness of
phenotypes. Since it is difficult to measure the aes­
thetic visual success of simulated objects or images
automatically, here the fitness is provided interacti­
vely by a human user based on visual perception.
Population sizes used for genetic algorithms are
usually fairly large (100 to 1000 or more) to allow
searching of many test points and surpassing local
optima. At each generation, many individuals sur­
vive and reproduce to create the next generation.
For the examples presented in this paper, the suc­
cess of a solution is dependent on human opinion;
therefore there is no single global optimum. Many
local optima are potentially interesting solutions.
For this reason, and also because of user interface
practicality, a smaller population size has been
used (4-20), and only one or two individuals are
chosen to reproduce for each new generation.
Genotypes used in genetic algorithms traditionally
consist of fixed-length character strings used by
fixed expression rules. This is appropriate for

467

searching predefined dimensional spaces for opti­
mum solutions, but these restrictions are some­
times limiting. Koza (1992) has used hierarchi­
cal lisp expressions as genotypes such that the di­
mensionality of the search space itself can be ex­
tended to solve problems such as artificial ant navi­
gation and game strategies successfully. Discovery
systems, such as AM and Eurisko, also use a form
of mutating lisp programs (Lenat and Brown 1984).
The examples presented here also use genotypic
representations composed of lisp expressions, al­
though the set of functions used includes various
vector transformations, noise generators, and im­
age processing operations, as well as standard nu­
merical functions.
In the next section, techniques for generating, mu­
tating, and combining symbolic lisp expressions to
explore hyperspaces of possible equations are de­
scribed. In Sect. 3, 4, and 5, examples are presented
that use these techniques to evolve 2D textures,
3D parametric objects, and 2D dynamical systems.
Finally, results are discussed, suggestions are made
for future work, and conclusions are given.

2 Lisp expressions as genotypes

Traditional genotypes that use fixed-length strings
of parameters or digits and fixed expression rules
are limited by having solid boundaries on the set
of possible phenotypes. There is no possibility for
the evolution of a new developmental rule or a
new parameter. There is no way for the genetic
space to be extended beyond its original definition
- the N-dimensional genetic space will remain only
N-dimensional. To surpass this limitation, it is de­
sirable to include procedural information in the
genotype instead of just parameter data, and the
procedural and data elements of the genotype
should not be restricted to a specific structure or
size.
Hierarchical lisp expressions are used as genotypes
in an attempt to meet these needs. A set of lisp
functions and a set of argument generators are used
to create arbitrary expressions that can be mutated,
evolved, and evaluated to generate phenotypes.
Some mutations can create larger expressions with
new parameters and extend the space of possible
phenotypes, while others just adjust existing parts
of the expression.

468

(\\lsuaJ­
_.0111putcr

Equations used by procedural models can often
be represented by one or more lisp expressions.
These expressions or sets of expressions become
the genotypes for evolvable procedural models. For
example, a texture-generating procedure can be de­
scribed by an expression that calculates a color
for each pixel coordinate (X, Y), and a procedure
for generating a 3D parametric surface can be de­
scribed by an equation that calculates a 3D vertex
location for each parameteric variable pair (U,

V).
For each application, a function set defines a set
of primitive operations from which lisp expressions
can be assembled. A basic function set might con­
sist of some simple common lisp operations:+, - ,
*, /, mod, round, min, max, abs, expt, log, sin, and
cos (Steele 1984). Function sets can be extended
or adjusted to give various hyperspaces of possible
results.
To begin a session of interactive evolution, an ini­
tial population of genotypes consisting of simple
randomly generated lisp expression is created.
These are assembled by first choosing a function
at random from the function set and then generat­
ing as many arguments at random as that function
requires. Arguments can be of several types: con­
stant scalar values, three element vectors, variables
such a X or Y pixel coordinates or additional ran­
dom expressions generated recursively. The initial
genotypes of the population are then expressed by
performing the calculations described in their lisp
expressions, and the resulting phenotypes are dis­
played to the user for interactive selection. The best
individuals are then selected to survive and repro­
duce to create the next generation, and the process
repeats with the new population.

2.1 Mutating symbolic expressions

Symbolic expressions must be reproduced with
mutations for their evolution to progress. There
are several properties of symbolic expression muta­
tion that are desirable. Expressions should often
be only slightly modified, but sometimes signifi­
cantly adjusted in structure and size. Large random
changes in genotype usually result in large jumps
in phenotype that are less likely to be improve­
ments, but are necessary for extending the expres­
sion to more complex forms.
A recursive mutation scheme is used to mutate ex­
pressions. Lisp expressions are traversed as tree

-·�,1suuJ------------------------­
()0111putcr

structures, and each node is in turn subject to pos­
sible mutations. Each type of mutation occurs at
different frequencies, depending on the type of
node:

1. Any node can mutate into a new random expres­
sion. This allows for large changes and usually re­
sults in a fairly significant alteration of the pheno­
type.
2. If the node is a scalar value, it can be adjusted
by the addition of some random amount.
3. If the node is a vector, it can be adjusted by
adding random amounts to each element.
4. If the node is a function, it can mutate into a
different function. For example (absX) might be­
come (cosX). If this mutation occurs, the arguments
of the function are also adjusted if necessary to
the correct number and types.
5. An expression can become the argument to a
new random function. Other arguments are gener­
ated at random if necessary. For example, X might
become (* X .3).
6. An argument to a function can jump out and
become the new value for that node. For example,
(* X .3) might become X. This is the inverse of the
previous type of mutation.
7. Finally, a node can become a copy of another
node from the parent expression. For example,
(+ (absX)(* Y.6)) might become (+((abs
(* Y.6))(* Y.6)). This causes effects similar to those
caused by mating an expression with itself. It al­
lows subexpressions to duplicate themselves within
the overall expression.
Other types of mutations could certainly be imple­
mented, but these are sufficient for a reasonable
balance of slight modifications and potential for
changes in complexity. Figure 2 shows a parent ob­
ject in the upper left with 19 offspring created by
random mutations of its equations. Note that some
mutations cause little or no variation from the par­
ent, while others cause significant alterations.
It is preferable to adjust the mutation frequencies
such that a decrease in complexity is slightly more
probable than an increase. This prevents the ex­
pressions from drifting towards large and slow
forms without necessarily improving the results.
They should still easily evolve towards larger sizes,
but a larger size should be due to selection of im­
provements instead of random mutations with no
effect. The overall mutation frequency is scaled in­
versely in proportion to the length of the parent
expression. This decreases the probability of muta-

tion at each node when the parent expression is
large so that some stability of the phenotypes is
maintained.
The evaluation of expressions and display of the
resulting images can require significant calculation
times as expressions increase in size. To keep image
evolution at interactive speeds, estimates of com­
pute speeds are calculated for each expression by
summing precomputed runtime averages for each
function. Slow expressions are eliminated before
ever being displayed to the user. New offspring
with random mutations are generated and tested
until satisfactory expressions occur. If necessary,
this technique could also be performed to keep
memory usage to a minimum.

2.2 Mating symbolic expressions

Symbolic expressions can be reproduced with sex­
ual combinations to allow characteristics from sep­
arately evolved individuals to be mixed into a sin­
gle individual. A node in the expression tree of
one parent is chosen at random and replaced by
a node chosen at random from the other parent.
The new expression is checked for legal syntax and
if necessary more matings are performed until a
legal expression results. This crossing over tech­
nique allows any part of the structure of one parent
to be inserted into any part of the other parent
and allows two subexpressions that have evolved
independently to be combined into one geno­
type.

2.3 Genetic cross dissolves

Another technique for combining expressions is
achieved by performing "genetic cross dissolves"
between two expressions. A new expression is
created by copying the nodes of the original ex pres­
sions where they are identical but interpolating be­
tween the nodes where they are different. Results
of differing expression branches are first calculated
and interpolated and then used by the remaining
parts of the expression. If the two expressions have
different root nodes, the dissolve will cause a
"fade" from one to the other, but if only parts
within their structures are different, interesting
transformations can occur as the interpolation pro­
ceeds. For example, the two simple expressions
(* X Y) and (* X .6) could be dissolved to give the

469

------------------------"�isual­
(�on1putcr

expression (* X (dissolve Y .6 a)) where a is varied
to perform the interpolation.
This technique uses the existing genetic representa­
tion of evolved procedural models to generate in­
betweens for a smooth transition from one to an­
other. It is an example of the usefulness of an alter­
nate level of control given by the underlying genetic
information. A series of frames from a genetic cross
dissolve between two parametric objects is shown
in Fig. 3.
Repeated interpolations can be a useful method
for creating animation from a series of evolved
structures. "Genetic splines" can even be used to
give smoother interpolation between multiple con­
trol genotypes.
The following sections will present three specific
examples of procedural models the equations of
which are represented as lisp expressions so they
can be mutated, mated, and interactively evolved.

3 Evolving pictures and textures

The first example involves the procedural genera­
tion of textures by symbolic expressions that de­
scribe color as a function of the X and Y pixel
coordinates:

c<R,G,m = F(X, Y)

Equations that perform this mapping are evolved
using a function set containing vector transforma­
tions, procedural noise generators, and image pro­
cessing operations, as well as some standard com­
mon lisp functions:

+, - , *, /, mod, round, min, max, abs, expt, log,
and, or, xor, sin, cos, atan, if, dissolve, hsv-to-rgb,
vector, transl arm-vector, bw-noise, color-noise,
warped-bw-noise, warped-color-noise, blur, band­
pass, grad-mag, grad-dir, bump, ifs, warped-ifs,
kaleidoscope, warp-abs, warp-rel, warp-by-grad.

Each function takes a certain number of arguments
and calculates and returns an image of scalar (b/w)
or vector (rgb color) values.
Noise generators can create solid scalar and vector
noise at various frequencies with random seeds
passed as arguments so that specific patterns can
be preserved between generations (Fig. 4f; Lewis
1989). The warped versions of functions take input
coordinates as arguments instead of pixel coordi­
nates, allowing the result to be distorted by an
arbitrary inverse mapping function (Fig. 4h). Boo-

470

lean operations (and, or, and xor) operate on each
bit of floating-point numbers and can cause fractal­
like grid patterns (Fig. 4e). Versions of sin and cos
which normalize their results between 0.0 and 1.0
instead of - 1.0 and 1.0 can be useful. Some func­
tions such as blurs, convolutions, and those that
use gradients also use neighboring pixel values to
calculate their results (Fig. 4 g). Band-pass convolu­
tions are performed using a difference of Gaussians
filter which can enhance edges. Iterative function
systems (ifs) can generate fractal patterns and
shapes, and a kaleidoscope function generates trian­
gular patterns.
It might be interesting to include many other func­
tions in this function set, but those given have pro­
vided for a fairly wide variety of resulting images.
Details of the specific implementations of each
function are not given here because they are not
as important as the evolution process itself. Most
of the functions have been adapted either to coerce
the arguments into the required types, or to per­
form differently according to the argument types
given to them. Arguments to certain functions can
be restricted optionally to some subset of the avail­
able types. For the most part these functions re­
ceive and return images, and could be considered
as image processing operations. Expressions made
from these functions are simply evaluated to pro­
duce images. Figure 4 shows examples of some sim­
ple expressions and their resulting images.
Interactive evolution of these expressions is per­
formed by first generating a population of simple
random expressions and displaying them to the
user for selection. The expressions of images se­
lected by the user are reproduced with mutations
for each new generation such that more and more
complex expressions and more perceptually inter­
esting images can occur. Figure 5 was generated
from this expression:

(sin (+ (- (grad-direction (blur (if (hsv-to-rgb
(warped-color-noise (vector 0.57 0.7 3 0.92) (/ 1.85
(warped-color-noise X Y 0.02 3.08)) 0.11 2.4))
(vector 0.54 0.73 0.59) (vector 1.06 0.82 0.06)) 3.1)
1.46 5.9) (hsv-to-rgb (warped-color-noise Y (/ 4.5
(warped-color-noise Y (/ X }) 2.4 2.4)) 0.02 2.4)))
X))

Note that expressions only five or six lines long
can generate images of fair complexity. Fortunate­
ly, analysis of expressions is not required when us­
ing these methods to create them. Users usually
stop attempting to understand why each expres-

- ..,\isu�,t
(... «un1n1tcr

2 3

5 6

Fig. 2 Parent and 19 mutations

Fig. 3. Frames from a ·• genetic cross dissolve"

Fig. 4a-i. Simple image expression examples reaching left to
right, top 10 bottom: a X; b Y; c (abs X): d (mod X (abs Y)):
c (and X Y): f (bw-noise .2 2); g (color-noise. I 2): h (grad-direc­
tion (bw-noise .15 2) .0 .0): i (warped-color-noise (• X .2)
Y. I 2)

Fig. 5. Evolved texture

Fig. 6. Frame from ·• Primordial Dance"

Fig. 7. Processed photograph

Fig. 8. Parametric surface

Fig. 9. Shell shape

Fig. 10. Folded structure

4

7

sion generates each image. Figure 6 was also gener­
ated in this way. Its corresponding expression, and
others, are included in the appendix.

3.1 Volume textures, animation,
and image processing

Other procedural models can be evolved with vari­
ations on the methods already described. Volume
textures, animated textures, and image processing
functions can be represented by adding to the set
of input variables that are included in the expres­
sions.
Volume textures can be described by adding a third
variable, Z, to the list of available arguments. This
enables functions to evolve that calculate colors

471

--------------------------------'�\'isual-­
(-ion1I>utcr

for each point in (X, Y,Z) space. The junction set
is adjusted for better results; 20 functions that
require neighboiring pixel values such as convolu­
tions and warps are removed, and 3 0 solid noise
generating functions are added. These expressions
are more difficult to visualize because they encom­
pass all of 3 0 space. They are evaluated on the
surfaces of spheres and planes for fast previewing
and selection. Evolved volume expressions can
then be incorporated into procedural shading func­
tions to texture arbitrary objects. This process al­
lows complex volume textures such as those de­
scribed in Peachy (1985) and Perlin (1985) to be
evolved without requiring specific equations to be
understood or carefully adjusted by hand.
Animations of textures can be created by perform­
ing genetic cross dissolves between evolved static
textures as described, but another method for
evolving animated textures is to include an input
variable, Time, in the expressions. Functions of X,
Y, and Time can then evolve such that moving im­
ages are produced when the value of Time is
smoothly varied.
An input image can also be added to the list of
available arguments to make functions of X, Y, and
Image. This allows creation of complex image pro­
cessing and warping functions that compute new
images from given input images. Figure 7 was
created from an input image of a human figure.
The short film Primordial Dance (Sims 1991 c) was
created using a variety of these methods.

4 Evolving 3 D shapes

The second example of interactive evolution in­
volves a procedural model for creating 3 0 para­
metric surfaces. The shape of a surface is described
by an arbitrary function that calculates a 3 0 posi­
tion as a function of two parametric variables U
and V:

ftx.Y.z> = F(U, V)

The form of this equation is somewhat similar to
that of the first application, except U and V are
the input variables to the expressions instead of
X and Y, and the expressions calculate 30 coordi­
nates instead of colors. The function set normally
used here avoids functions that cause discontinui­
ties, but includes various functions for transform­
ing between coordinate systems and performing
3 0 manipulations and distortions:

472

+, -, *, /, min, max, abs, negate, sin, cos, sqrt,
square, expt, dissolve, vector, noise, warped-noise,
cyl-to-xyz, sph-to-xyz, rotate, vortex.

As examples, the expression (vector U V.O) would
create a simple flat grid on the X, Y plane, and
the expression (sph-to-xyz (vector 1.0 U JI)) would
produce a unit sphere. A fairly wide variety of com­
plex shapes can be described by longer expressions
assembled from this set of functions. The shape
of the object in Fig. 8 was interactively evolved,
and was generated by the following expression:

(rotate (cyl-to-xyz (vector (- -0.19 U) V V)) (*
(vector -0.007 0.4 0.87) U) (noise - 0.25 1 .37))

The shapes in Figs. 9-11 were also created in this
way and the expressions that generated them are
listed in the appendix.
Procedural textures for the surfaces of parametric
shapes can also be described by lisp expressions
and included in these genotypes. An expression
that calculates a surface color for each U, Vis eval­
uated at each surface element during the rendering
process. These are similar to the texture expres­
sions already described, but they are evaluated on
the surfaces of objects instead of on the flat image
plane. Textures of surfaces can be evolved either
simultaneously with the shape or independently.
Both the shape expression and the texture expres­
sion are subjected to mutations during reproduc­
tion, but either can be made stable· by selective
mutation prevention. The procedurally generated
textures and colors of the objects in Figs. 8-11 were
interactively evolved.
Parametric surfaces are polygonalized for render­
ing by evaluating the expression at small regular
intervals within some range of the parametric vari­
ables, such as 128 x 128 discrete samples of U and
V between - 1.0 and 1.0. The shapes shown were
polygonalized and rendered in this way. A method
that generates polygons or patches more adaptive­
ly, or even renders the parametric surface directly,
might be helpful, but this simple approach was cho­
sen for its ease of implementation.
An alternate method of rendering parametric sur­
faces is to create a small sphere at each U, V sample
as shown in Fig. 11. This allows the structure of
discontinuous or tangled shapes to be visualized
and is sometimes advantageous. When using this
rendering method, discontinuous functions such as
mod, round, and, or, and xor can be added back
to the function set.

-(_,\isnal
..,0111 utcr

14 15

In some cases the polygonalization and rendering
of complex parametric surfaces can not be per­
formed in real-time to allow as much interactive
speed as might be desired. A quick display of vertex
points can often give enough initial information
about the shapes to make selections and allow effi­
cient interactivity.

5 Evolving dynamical systems

The third and final example of interactive evolution
of procedural models involves 2 D dynamical sys­
tems described by systems of equations. ln this ap­
plication, several cooperating lisp expressions are
used to determine the initial states and time deriva­
tives of state variables of dynamical systems. For
example, a system containing two quantities, A and
B, at each grid location is described by four equa­
tions:

Ao=FAo(X, Y)

Bo
= Fso (X, Y)

d A/dt =FdA (A, B)

dB/dt=F,18(A,B)

FA o and F80 are functions that determine the initial
values for each element of A and B from their grid

Fig. 11. Visualizing with spheres

Fig. 12. Cell shapes

Fig. 13. Wave generators

Fig. 14. Branching patterns

Fig. 15. Fractal structures

coordinates (X, Y). FdA and Fd8 are functions that
determine the rate of change for each element of
A and Busing the current state of the system. Arbi­
trary functions for FAo, F80 , FdA • and Fds, are speci­
fied by lisp expressions that can vary in size, struc­
ture, and behavior. A genotype contains one lisp
expression for each of these functions. For example,
a genotype that would describe a simple reaction­
difTusion-]jke system of two chemicals that diffuse
and inhibit each other might be:

A0 =(noise .82)

B0 =(noise . 9 3)

d A/dt=(- (laplacian A) B)

d B/d l = (- (laplacian B) A)

The set of functions used to compose these lisp
expressions contains the usual common lisp func­
tions, but also contains operations that can per­
form various convolutions, and find first- and sec­
ond-order spatial derivatives:

+, - , *, /, mod, round, min, max, abs, expt, log,
sin, cos, atan, negate, sqrt, square, dissolve, if­
p/usp, x-grad, y-grad, grad-mag, grad-in-direction,
grad-directio11, neighbor-min, neighbor-max,
neighbor-ewe, convolve-with-mask, curl. /ap/acian,
anisotropic-/ap/acian.

473

-----------------------•J"isual­
(,i(•n1putcr

The function set for the initial state expressions
also contains a noise procedure, as used in the tex­
tures application above.
An initial population of dynamical systems is creat­
ed by generating simple random expressions for
the initial state and time derivatives of each state
variable. The corresponding simulations are dis­
played to the user by mapping the state variables
into colors for each iteration so the behavior of
the system can be observed as it progresses. Then,
the user selects one or more of these systems for
mutation and/or mating to produce the next gener­
ation, and the process repeats. After a number of
generations, genotypes with fairly complex expres­
sions and interesting resulting behaviors can occur.
As an alternative to starting with randomly gener­
ated expressions, the user can hand-code an initial
set of equations, such as a wave equation or a reac­
tion-diffusion system (Turk I 991; Witkin 1991),
and begin the evolution from there. This can allow
unexpected variations of initial input systems to
be explored.
For simplicity, simulations of continuous dynami­
cal systems are performed using Euler's method
of integration. The differential equations are ap­
proximated for a small discrete time interval LI t.

For example,

dA
=F(A)

dt

would be simulated by computing many discrete
updates of the value of A:

A' =A +A tF(A)

When LI t is smaller, the simulation is more accu­
rate, but more computation is required. (LI t = 0.1
is often used.)
Systems can sometimes generate values that exceed
the legal bounds of numerical representation.
Values are regularly clamped to some legal bounds
to avoid overflow errors. These particular discreti­
zations of time and clamping parameters can affect
the behaviors of some systems. In fact, systems that
exploit these specific procedures for interesting ef­
fects sometimes evolve.
The first derivatives are also included as possible
arguments in the expressions. Resulting behaviors
might not be consistent if LI t is modified, but for
a given time increment, this can help interesting
physical-like systems to occur.
The space of possible dynamical systems can be
further enhanced by allowing complex numbers,

474

instead of just real values, to be included in the
state variables and expressions. The operations in
the function set are adjusted to perform on com­
plex quantities as well as reals, and complex con­
stants and a grid coordinate value, # C(X Y), are
included as possible arguments. (The form #C(ri)
is used to denote a complex quantity with real part
r and imaginary part i.) Various spiral shapes and
fractal structures that use complex arithmetic can
be found (Fig. 15).
Figures 12-15 show the results after a number of
iterations of some dynamical systems that were
evolved by these methods. Figure 12 was produced
by the following system of equations:

AO=(sin (noise -.14 -.77))

BO= 1.99

dA/dt=(+ (+ (laplacian A 2.1)

(if-plusp (-AB) .4 .0))(* -.38 A))

d B/dt=(+ (laplacian A 4.99)(* -.4 B))

This system proceeds from random noise towards
a stable pattern of circular cell-like shapes. Again,
it is often not obvious why a set of equations pro­
duces the behavior is does, even for relatively short
expressions. Fortunately, a complete understand­
ing of these equations is not required even by the
creator. The expressions that specify the equations
that produced Figs. 13-15 are given in the Appen­
dix.

6 Results

The three examples of interactive evolution de­
scribed have been implemented on the Connection
Machine® system CM-2, a data parallel supercom­
puter (Hillis 1987). The parallel implementation de­
tails will not be discussed in detail here, but each
application is reasonably suited for highly parallel
representation and computation. Lisp expression
mutations and combinations are performed on a
front-end computer and the expressions for each
application are evaluated on the Connection Ma­
chine system in parallel with one virtual processor
per data element (pixels, coordinates, or grid cells).
This usually allows calculation and display of re­
sults to be performed fast enough for efficient inter­
activity.
Many of the procedurally generated results shown
here were evolved in timescales of only a small
number of minutes - probably much faster than

-�\isual
(.. 0111putcr

they could be designed. These methods allow pro­
cedural models to be explored efficiently and with
the very simple interface of just choosing from sam­
ples.
Two different approaches of user selection behav­
ior are possible. The user can have a goal in mind
and select samples that are closer to that goal until
it is hopefully reached. Alternatively, the user can
follow the more interesting samples as they occur
without attempting to reach any specific goal. The
latter approach often leads to more interesting re­
sults.
These various evolved products can be saved in
the concise form of the final genotypic expression
itself. This facilitates keeping large libraries of
evolved forms which can then be used to contribute
to further evolutions by mating them with other
forms or further evolving them in new directions.

7 Future work
Many other procedural models could potentially
be explored using these techniques. Other types of
grammatical systems that describe generative pro­
cesses for creating various entities could also be
subjected to mutation, mating, and interactive se­
lection. Procedures could be explored that control
distributions or generate motions for many ele­
ments such as systems of particles or brush strokes.
Algorithms that use rules to construct, arrange,
and combine 3 D geometric primitives could also
be evolved. These tools might also be valuable in
domains beyond computer graphics for the design
of various items such as fonts, clothing, or even
sounds.
Several variations on these methods for artificial
evolution might make interesting experiments. One
could attempt to automatically evolve symbolic ex­
pressions that could generate simple specific goals.
A differencing function could be used to calculate
a fitness based on how close a test genotype was
to the goal, and the goal could be searched for
by automatic selection. Then, interactive selection
could be used to evolve further results starting from
there.
Large amounts of information of all the human
selection choices of many evolutions could be
saved and analyzed. A difficult challenge would
be to create a system that could generalize and
"understand" what makes a result visually success­
ful, and even generate other images that meet these
learned criteria.

Combinations of random variations and nonran­
dom variations using learned information might
be helpful. If a user picks phenotypes in a certain
direction from the parent, mutations for the next
generation might have a tendency to continue in
that same direction, giving "evolutionary momen­
tum."
Also, combinations of evolution and the ability to
apply specific adjustments to the genotype might
allow more user control of evolved results. Auto­
matic "genetic engineering" could permit a user
to make requests that might, for example, make
an object more blue, or a texture more grainy.

8 Conclusion
Interactive evolution of equations for procedural
models has been demonstrated to be a potentially
powerful tool for the creation of textures, objects,
and dynamical systems for use in computer graph­
ics and animation. Reproduction with random
variations and survival of the visually interesting
can lead to useful results. Representations for geno­
types that are not limited to fixed spaces and can
grow in complexity have shown to be worth­
while.
Evolution is a method for creating and exploring
complexity that does not require human under­
standing of the specific process involved. This pro­
cess of interactive evolution could be considered
a system for helping the user with creative explora­
tions, or it might be considered a system which
attempts to "learn" about human aesthetics from
the user. In either case, it allows the user and com­
puter to work together interactively in a new way
to produce results that neither could easily produce
alone.
An important limiting factor in the usefulness of
interactive evolution is that samples need to be
generated quickly enough that it is advantageous
for the user to choose from random samples rather
than to adjust new samples carefully by hand. The
computer needs to generate and display samples
fast enough to keep the user interested while select­
ing amongst them. As computation becomes more
powerful and available, these methods should be­
come advantageous in more and more domains.

Acknowledgments. Thanks to Lew Tucker, Gary Oberbrunner,
Matt Fitzgibbon, and Jim Salem for help and CM graphics
software support. Thanks to JP Massar for Starlisp support,
and to Katy Smith for proofreading. Thanks to Pattie Maes
for encouragement, to Richard Dawkins for demonstrating the

475

______________________ , .. ,isual­
Co111puter

interactive concept, and to Peter Schroder for being a helpful
early user of these tools.
A version of this paper was previously published in the Imagina
Proceedings, Monte-Carlo, January 1992.

References

I. Darwin C (1859) The origin of species. New American Libr­
ary, Mentor paperback, New York

2. Dawkins R (1986) The blind watchmaker. Harlow, London
3. Goldberg DE (1989) Genetic algorithms in search, optimiza­

tion, and machine learning. Addison-Wesley, Rending, MA
4. Grenfenstette JJ (1985) Proc 1st Int Conf Genetic Algo­

rithms Their Appl, Hillsdale, N.J.
5. Grenfenstette JJ (1987) Genetic algorithms and their appli­

cations. Proc Int Conf Genetic Algorithms, Hillsdale, N.J.
6. Haggerty M (1991) Evolution by esthetics, an interview with

W. Latham and S. Todd. IEEE Comput Graph 11, pp 5-9
7. Hillis, WD (1987) The connection machine. Scientific Ameri­

can 256: 108-115
8. Holland JH (1975) Adaptation in natural and artificial sys­

tems. University of Michigan Press, Ann Arbor, Mich.
9. Koza JR (1990) Genetic programming. The MIT Press,

Cambridge, MA
10. Lenat DB, Brown JS (1984) Why AM and EURISKO ap­

pear to work. Artificial Intelligence 23: 269-294
11. Lewis JP (1989) Algorithms for solid noise synthesis. Com­

put Graph 23:263-270
12. Peachy D (1985) Solid texturing of complex surfaces. Com­

put Graph 19:279-286
13. Perlin K (1985) An image synthesizer. Comput Graph

19:287-296
14. Schaffer JD (1989) Proc 3rd Int Conf Genetic Algorithms,

Morgan Kaufman Publishers, San Mateo, CA
15. Sims K (I 991 a) Artificial evolution for computer graphics.

Comput Graph 25:319-328
16. Sims K (1991 b) Interactive evolution of dynamical systems

Proc Eur Conf Artificial Life, Paris, MIT Press, pp 171-178
17. Sims K (1991 c) Primordial Dance, Siggraph/ACM Video

Review-Electronic Theatre
18. Steele G (1984) Common Lisp, The Language, Digital Press
19. Todd SJP, Latham W (1991) Mutator, a subjective human

interface for evolution of computer sculptures. IBM United
Kingdom Scientific Centre Report 248

20. Turk G (1991) Generating textures for arbitrary surfaces
using reaction-diffusion. Comput Graph 25:289-298

21. Witkin A, Kass M (1991) Reaction diffusion textures. Com­
put Graph 25:299-308

Appendix
Figure 6, Frame from "Primordial Dance:"

(dissolve (/ (warped-bw-noise (expt (blur (kaleidoscope 2.1 6.9 Y
(vector 0.96 0.42 0.51)) 7.6) 0.12) 0.5 0.17 9.6) (vector 0.49 0.53
0.92)) (color-grad (warped-bw-noise (expt (blur (kaleidoscope 1.6
6.9 Y(vector 0.30 0.45 -0.14)) 3.8) 0.12) (bump (ifs 4.5 0.82 0.22
3.8 0.45 0.049 3. 7 I 6.1 -0.87 2.3 0.10 0.46 -5.0 7 .6 12.6 0.05)
6.4 0.007 (vector 0.98 0.12 0.18) (vector 0.11 0.59 0.014) 1.07
8.1 12.1) 0.179.6) 2.8 2.0 (vector 0.47 0.04 0.22) 2.0) 0.48)

Figure 7, Processed photograph:
(cos (+ (+ (cos (+ (warp-by-grad Image Image 0.34 I. I 2)(vec­
tor .28 .40 .46))) Y) Image))

476

Figure 9, Shell shape:
(rotate (dissolve (cyl-to-xyz (vector -0.95 UV)) (vector 0.46 0.16
-0.33) (negate U)) (* (vector -0.006 -0.008 1.05) 2.29) U)

Figure 10, Folded structure:
(rotate (dissolve (cyl-to-xyz (vector (- -0.19 U) V V)) (rotate
(vector -0.77 -0.11 0.017) (vector 1.8 0.42 2.2) (• (- U -1.9)
1.18)) (negate (warped-noise-0.Q7 V 0.43 -0.24))) (• (vector
-0.007 0.4 0.87) 1.14)(noise -0.25 1.37))

Figure 11, Visualizing with spheres:
(negate (cyl-to-xyz (- (vector 0.027 0.28 U) (+ (rotate (vector
-0.063 1.82 -0.21) (if-plusp V (vector 0.24 -1.15 -0.98)
(warped-noise V V(warped-noise U (a tan 0.45 U) -1.02 -0.011)
1.87 -0.097)) (mod V -1.38)) (vector (and (xor (- (/ U U)
U) -0.95) (warped-noise -0.019 -1.0 1.84 -1.29)) U (square
U))))))

Figure 13, Wave generators:
A0=0.33
80= 0.27
C0=(log (- 0.5 (grad-mag-squared (noise -0.2 -0.04))) (/ (no­
ise 0.02 0.03) (noise -0.007 -1.4)))
dA/dt=C

d 8/d t = (anisotropic-laplacian (sin A) A 0.9 0.08)
dC/dt =(neighbor-ave (a tan d A/dt (Laplacian B 1.8)))

Figure I 4, Branching patterns:
AO=Y
BO= 1.0
CO=(+ (negate(noise 0.12 1.9)) Y)
d A/d t = (neighbor-max (neighbor-max C))
d 8/d t = (x-grad C)
d C/d t = (neighbor-ave (grad-direction B 0.25))

Figure 15, Fractal structures:
AO= #C(X Y)
d A/d t = (+ (/ (+ (square A) 1.0) A) (+ -0.7 (expt (max (max
A (laplacian (log A * C (-1.2 -0.05)) 0.11)) * C (0.21 -0.12))
3.5)))

KARL SIMS received a B.S. in
Life Sciences from the Massa­
chusetts Institute of Technology
in 1984. After working at
Thinking Machines Corpora­
tion for a year he returned to
the Massachusetts Institute of
Technology to study graphics
and animation at the Media
Laboratory and received an
M.S. in Visual Studies in 1987.
He then joined the production
research team at Whitney/De­
mos Productions in California,
and later became co-founder
and director of research for

Hollywood based Optomystic. He currently works once again
at Thinking Machines Corporation as a research scientist and
artist in residence. His recent works of animation include: "Par­
ticle Dreams", "Excerpts from Leonardo's Deluge", "Pansper­
mia", "Primordial Dance", and "Liquid Selves".

