
6n <$>- Computer Graphics, Vol.ume 24, Number 4, August 1990

Particle Animation and Rendering

Using Data Parallel Computation

Karl Sims

Optomystic, 725 N. Highland, Hollywood, CA 90038
Thinking Machines Corporation, 245 First Street, Cambridge, MA 02142

1 Abstract

Techniques are presented that are used to animate and ren
der particle systems with the Connection Machine CM-2, a
data parallel supercomputer. A particle behavior language
provides an animator with levels of control from kinematic
spline motions to physically based simulations. A parallel
particle rendering system allows particles of different shapes,
sizes, colors and transparencies to be rendered with anti
aliasing, hidden surfaces, and motion-blur. One virtual pro
cessor is assigned to each primitive data element: one to
each particle, and during the rendering process, one to each
pixel-sized particle fragment, and to each pixel. These tools
are used to model dynamic phenomena such as wind, snow,
water, and fire.

2 Introduction

As computers become a more practical tool for visual ex
pression, modeling and animation systems need to-all.ow for
more abstract, high level instructions rather than requiring
each object and each motion to be specified individually.
Commands such as "make a gust of wind," "drop this ob
ject," "grow a tree," or even "make this character walk," are
beginning to become feasible [2,6,13,18,21,25,31,32].

Particle systems provide for the creation of complex struc
ture and motion from a relatively brief abstract description.
They can be used to produce dynamic and "fuz�y" effects
that are difficult to achieve with traditional obje�ts made
of surfaces and animated with non-procedural motion [19].
They have previously been used to model fire in the Gene- 1
sis Effect of Star Trek II (14], trees and grass such as those
shown in Andre and Wally B. (11,20], breaking waves [5,15],
fireworks (30), and other abstract effects in Systeme Partic
ulier [26). A 2D particle system was used as part of a fluid
simulation for Jupiter's surface in 2010 [33). The flocks and
schools in Breaking the Ice might also be considered as par
ticle systems where each particle is a complex object [27,22).

The Connection Machine (R) CM-2 is a data parallel
computer consisting of between 4K and 64K processors with
up to 32K bytes of memory per processor, and floating point
hardware [8,9,23,29) .. A hypercube connection architecture
and special routing hardware allows general communication

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1990 ACM-0-89791-344-2/90/008/0405 $00. 75

between processors. A virtual processor mechanism is used
to simulate more processors than the physical number so
the virtual machine size can vary depending on the number
of data elements in the application. For example, if 32K
particles were created on a CM-2 with SK physical proces
sors, a virtual processor set with 4 virtual processors per
processor could contain all 32K particles, one per virtual
processor. Sets of virtual processors can be configured into
n-dimensional grids. For example, a lD virtual processor
set would be used to represent particles, but a 2D virtual
processor set would be used to represent the pixels of an
image.

Programming a Connection Machine system is similar to
programming a single processor except that the thousands
of processors all execute the same program at the same time,
each on different data. A parallel language called Starlisp is
used in this work [10). Starlisp is a parallel extension of Lisp
that allows the same power of combination and abstraction
as Lisp, but consists of parallel instructions that operate on
parallel variables.

Because of the parallel nature of particle systems, they
are well suited for highly parallel computation. A parallel
language is convenient to use in buiiding a particle anima
tion language, and conversely this system is a good example
of some basic data parallel techniques. Instructions or rules
of behavior are described as if addressing a single particle,
but they are applied to all particles (or a subset of them) in
parallel. The result of the instruction will usually be differ
ent for each particle because it uses the state of the particle
to determine its effect.

The three main sections of this paper describe a language
containing some basic tools for animating particles, a system
for rendering 3D particles, and finally, some specific appli
cations that demonstrate how the animation and rendering
is used to produce some natural phenomena effects.

3 Particle Animation: A Particle Behavior Language

Although many applications of particle animation will still
require their own special software, a general set of tools is
used to create a wide variety of effects. Starlisp and Lisp
provide an environment that allows existing particle opera
tions to be easily combined into new higher level operations.

Physical simulations can create motion that is much more
complex and realistic looking than motion achieved by mov
ing objects along spline curves or through keyframes (1,3,7,
12,16,28). Objects animated kinematically often are not per
ceived as dynamically correct, whereas objects animated by
true physical simulation will look correct. However, ending
up with a desired motion by specifying only forces and ac-

405

SIGGRAPH '90, Dallas, August 6-10, 1990

celerations can be very difficult. Just as in reality, where it
is hard to toss a coin and make sure it lands heads up, or
make a legged robot run without falling over, it is difficult
to predict the motion resulting from applied forces.

This particle animation system attempts to supply sev
eral levels of operations along the spectrum between detailed
kinematic control and physically based simulation. The goal
is not to strictly obey physics and reality, but to provide a
range of tools that allow a variety of effects to be easily
created that appear correct.

The equations of motion for a particle in !R3 with position
P, velocity V and an externally exerted acceleration A are:

V=Vo+ J Adt

P =Po+ J Vdt

Euler's method of integration allows the state of the par
ticle to be updated using a simple approximation of these
equations for a small discrete time interval At:

V' = V+AAt

p' = p + V + V'
At

2

Although other methods of integration are known to be more
computationally efficient, Euler's was chosen for its simplic
ity and is usually sufficient.

A Particle is created by allocating a new CM virtual
processor to contain the information about that particle.
Particles can either be newly created, or created by dupli
cating existing particles and copying their state. Particles
can be killed and removed from their processors to make
those processors available for new particles.

Each virtual processor in the CM representing a particle
contains a data structure whose elements are the particle's
state variables. A particle has both a head position and a
tail position. The head position is usually animated and the
tail position follows along for motion blurring. The parti
cle structure also contains other variables such as velocity,
radius, color, and opacity.

Animation operations on particles can either initialize
or alter the position or velocity of particles. In a purely
physical simulation, these values would first be initialized,
then, for each time interval At, the velocity would be altered
by external accelerations such as gravity, and finally the
position would be updated as shown above. However, for
kinematically controlled motion, the position may be set
directly, regardless of the previous position or velocity. It
is also sometimes useful to set the position relative to the
previous position or to alter the velocity in ways other than
applying a simple translational acceleration.

Operations used to move particles are divided into four
categories: those that set the position, those that set the
velocity, those that alter the position or "apply" a velocity,
and those that alter the velocity or apply an acceleration.
Some examples of each are given in the following sections.

3.1 Position Operations

The positions of particles can be set in the following ways:

- Randomly within a rectangular solid.
- Randomly within a sphere.
- Randomly on the surface of a sphere.

406

- One particle on each vertex of a polygonal object.
- Randomly on the surface of a polygonal object.
- 3D Transformation from the local coordinates.

These operations are usually performed only once at the
beginning of a particle's life, except the 3D transformation
operation which is usually performed at every frame if used.

3.2 Velocity Initialization Operations

The velocity is usually initialized only once at the start of
a particle's life unless jerky motion is desired. The velocity
of particles can be initialized in much the same ways that
the position can be initialized. The commonly used velocity
initialization operations are:

- In a constant direction.
- Randomly within a rectangular solid.
- Randomly within a sphere.
- Randomly on the surface of a sphere.

3.3 Applied Velocity Operations

An "applied" velocity alters the position parameter of the
particle depending on the previous position and affects the
apparent velocity, but does not change the velocity parame
ter of the particle. This allows velocity operations and accel
eration operations to act independently on particles without
interfering with each other, and can help enable combination
of dynamic simulation with other motion. For example, par
ticles falling due to gravity might also be moved randomly
from side to side using applied velocity operations.

Operations that are used to alter the position or "apply"
a velocity are:

- Translate by a constant.
- Rotate by a constant.
- Scale by a constant.
- Translate Randomly.
- Vortex.

3.3.1 The Vortex

The vortex operation is worth further description. The pa
rameters given to it are: azis of rotation, center, magnitude,
and tightneu.

The positions of particles are rotated about the axis
through the center of the vortex by an amount dependent
on their distance from the center. Higher tightness causes
the angle of rotation, 8, to fade more quickly in the radial
direction:

8 = magnitude
Rtis,htne••

where R is the distance from the center of rotation, and
tightness is usually between 1.0 and 2.0.

Other options to the vortex operation are useful. A range
of influence can cause 8 to decrease to zero beyond a certain
distance, and a translation along the vortex axis that is also
dependent on R can create tornado-like motion.

This operation by no means creates a physical simula
tion of a vortex, but it is much easier to create specific dy
namic fluid-like motions using choreographed vortices than
it would be to simulate fluid flow through complex physi
cal equations. There is often a tradeoff between animator
control and physically accurate simulations. This vortex
operation is an example of sacrificing some physical correct
ness in favor of animator control, while still allowing realistic
looking motions to be achieved.

� ¢. Computer Graphics, Volume 24, Number 4, August 1990

3.4 Acceleration Operations

Acceleration operations alter the particle's velocity. Forces
can be converted to accelerations by: A = F/m. "Acceler
ations" can increment, scale, rotate, or reflect the velocities
of particles. These operations usually use other parame
ters of the particle such as position, velocity, spiral-axis, or
mass to find the acceleration and adjust the velocity. They
can produce a wide variety of interesting and dynamically
correct-looking motions. Some examples of acceleration op
erations are:

- Constant acceleration (gravity).
- Random acceleration.
- Accelerate towards a point (orbit).
- Accelerate towards a line.
- Accelerate towards the local coordinates.
-Damp
- Undamp
- Spiral.
-Bounce off a plane.
- Bounce off a sphere.

The first five of these are basic translational accelerations
where the velocity is simply incremented by the acceleration:
V' = V +ALlt. The acceleration can be constant, random, or
may be directed towards a point or a line, and the magnitude
of acceleration may depend on the distance of the particle's
position from the point or line. For example an acceleration:

0-P
A

=
gmo

10 - PIS

will create inverse-square law orbits where 0 is the fixed
center of the orbit with mass mo, g is a constant, and Pis the
particle position. This equation is a form of Newton's F =
gm1 m2/r2

. (In this example the acceleration can change
very rapidly near 0, which, unless Llt is very small, causes
errors that fling the particles out of their orbits.)

3.4.1 Damping

A simple approximation to damping is used to simulate ef
fects such as air friction on particles. A deceleration propor
tional to the current velocity magnitude is applied to the
particle in the direction of the current velocity. A damp
ing parameter d typically ranges between 0.0 and 10.0. The
damping deceleration is clamped so as not to reduce the
velocity below a given threshold.

, . threshold
V = V maz(1 - dllt , mm(l.O,

IVI
))

A more physically accurate model for damping could be im
plemented with damping forces non-linearly related to ve
locity, and not necessarily proportional to mass.

Undamping is used to cause acceleration instead of de
celeration in the direction of the current velocity (d < 0),
and can be performed on particles below a threshold value
to smoothly accelerate them to some minimum speed.

3.4.2 The Spiral

Spiral motions contribute to many different effects such as
swirling fire or twirling snowflakes. Each particle to be spi
raled is given a spiral axis which can be initialized using the
same set of methods for initializing velocities shown above.
The spiral operation causes the velocity vector to be rotated

A:r:is

.. b.

Figure 1: Spiral.

about the spiral axis. For a given spiral speed, s, the veloc
ity is rotated by an angle (J = silt, for each time interval
Llt. [See figure la).

A particle can move in a variety of helix shaped paths
depending on the relative angle of its velocity to its spiral
axis [figure lb). If they are perpendicular the particle will
remain within a circle. If they are parallel there will be no
effect. Notice that when particles are spiraling, they move
in the general direction of plus or minus their spiral axes.

3.4.3 The Bounce

Particles can be bounced off primitive shapes made of planes
and spheres. A simple bounce with no energy loss could be
performed by just reflecting the velocity of particles that
have passed beyond the boundary of the surface by the nor
mal N:

V' = V - 2(V • N)N

This method allows particles to penetrate the surface for at
least one iteration, and the effective position they bounce
from is usually slightly below the surface unless many iter
ations are calculated per frame.

A more complete bouncing method considers friction and
resilience of the particle and sets the new position and ve
locity as if the bounce occured exactly on the surface. All
other operations are performed before any bounce opera
tions, and the positions are updated by the new velocities.
Then, particles are tested and bounced off any surfaces that
they have penetrated. If a particle has penetrated a sur
face a bounced-flag is set, and the velocity is broken into its
normal and tangential components, Vn and Vt:

Vn = (V·N)N

Vt=V-Vn

[See figure 2.) A friction parameter, µ, reduces the tangen
tial component, and the normal component is reflected and
scaled by a resilience parameter, e, (both can range from 0.0
to 1.0):

V' = (1 - µ)Vi - tVn

If it is desirable to prevent particles from getting entirely
stopped by friction, it is necessary to provide a velocity mag
nitude value below which friction has no effect.

Particles have both head and tail positions, Ph and A,
to be used for motion blur. They are both flipped about the
surface to account for the bounce. If S is any point on the
surface:

407

SIGGRAPH '90, Dallas, August 6-10, 1990

N

v·

Figure 2: Bounce.

P: = Pi - 2((Pt - S) • N]N

The tail is also flipped because the particle renderer can not
motion blur particles with kinks in their motion. Finally the
tail is pulled up to the point of contact on the surface so it
doesn't hang below the surface.

Bouncing off spheres is performed in the same way as
bouncing off planes, except N and S are calculated for the
closest point on the surface of the sphere to the particle. If
C is the center of a sphere of radius r:

N = _R_h_-_c_
IPh-CI

S=C+rN

More accurate physical models for bouncing could proba
bly be implemented, but this method is sufficient for creating
reasonable bouncing effects.

3.5 Particle Animation Summary

Particles have state variables in addition to position and
velocity that are used by some animation operations but
not by others. For example: type, age, mass, spiral-axis,
color, opacity, and size can be used. Other spare slots exist
for information such as initial velocity, a color to fade to, or
an age to die at.

A valuable component of this particle animation system
is a particle preview capability. Particles can be animated as
shown above, and viewed with a quick vector display at near
real time speeds. Fast turnaround time for particle motion
experimentation is very helpful.

An outline of an animation loop for creating particle mo
tion is as follows:

408

Create particles.
Initialize particles.
For each frame:

Set tails to previous heads.
For each simulation time increment:

Select subset of particles.
Perform operations.

Update positions using velocities.
Select subset of particles.

Perform bounce operations.
Adjust tails for motion blur shutter speed.
Render or preview.

4 Particle Rendering

This section describes a data parallel method used to render
large numbers of anti-aliased, motion blurred particles of
variable sizes, colors, and transparencies.

Every particle has a head and a tail, and the following
parameters are passed from the particle animation system to
the renderer for both the head and the tail of each particle:

- position (z,y,z)
- radius
- color (r,g,b)
- opacity

[See figure 3a.]
Motion blur is accomplished by linearly blurring each

particle independently. The animation system sets the head
and tail appropriately for the desired shutter speed. The
renderer produces a blurred streak for each particle such
that all the parameters above are interpolated between the
head and the tail.

Alternatively, the ability of the radius, color, and opacity
to vary between the head and tail of particles, can allow
some variety in particle shape, such as might be used to
approximate comets, sparks, or water droplets. [See figure
7b.]

Particles occupy an area in which the opacity falls off
from 1.0 at the center to 0.0 at the extremes. The func
tion that determines the falloff of the opacity can vary, and
is used to perform out-of-focus or blurry effects as well as
spatial anti-aliasing. Linear or Gaussian shapes are usually
used.

The rendering system first transforms the particles' head
and tail positions and radii into screen coordinates. Then it
dices the particles into fragments (in two stages) such that
for each particle there is one fragment for every pixel that it
will affect. These fragments containing color, opacity, and
depth are then sorted by depth and the final pixel colors are
calculated. This method has similarities to a simple a-buffer
polygon rendering algorithm [4], but does not use coverage
masks and does not perform texturing or lighting.

An overview of the rendering process is given below:

Update particles (animation).
Transform to screen coordinates.
For each horizontal patch:

Determine effective patch height.
Dice particles into spans.
For each vertical patch:

Determine effective patch width.
Dice spans into fragments.
Sort fragments by pixel and depth.
Perform hidden surface calculation.
Send colors to pixels.
Add background color.
Output pixels.

4.1 Dicing into Fragments

The particle animation operations described above only re
quire a single data type, the particle, to exist in a virtual
processor set within the CM. The rendering system, how
ever, generates multiple data types as it proceeds. Parti
cle spans, particle fragments, and pixels each are created
in virtual processor sets with one data element per virtual
processor.

� ¢> Computer Graphics, Volume 24, Number 4, August 1990

--

- I
-- '

Tl

-- l
-- /
- '

I I/

\
i/

,__,_

a. Particle b. Spans c. fragments

Figure 3: Particle Dicing.

First, each particle processor determines the number of
scan lines that the particle will occupy and the particle is
diced into spans. Multiple span processors are allocated for
each particle processor, and the particle information is sent
to them.

Then, each span processor similarly determines the num
ber of fragments it will occupy, allocates fragment processors
and sends the particle information to them.

When particles are diced into fragments, there are often
more total fragments than will fit into Connection Machine
memory. To compensate for this, the image is rendered in
subsections or patches. The size of each patch is adjusted
such that all the fragments in that patch will fit into memory
at once.

The patch height is chosen before allocating span proces
sors such that the number of span processors will not exceed
a limit. Likewise, for that horizontal section of the image,
patch widths are chosen such that the number of fragment
processors will not exceed a limit for each patch.

It is also desirable to fill as many fragment processors as
possible up to the limit since empty processors sit idle while
the others compute. The processor usage "efficiency" for a
given patch size is the total number of data elements (spans
or fragments) within the patch divided by the maximum
number permitted. The false position method [17] is used
to search for patch widths and heights that result in an
efficient use of span and fragment processors.

After the fragment processors are set for a given patch
size, the color, opacity and depth of that fragment are cal
culated by finding the closest point to the fragment on the
line between the head and tail of the particle. The particle
radii, depths, colors and opacities are interpolated between
the head and tail to give values at that point. The final frag
ment opacity is set as a function of the interpolated opacity,
the interpolated radius, and the distance from the center of
the particle.

Spatial anti-aliasing of particles is performed by ramping
the opacity to zero near the edges of the particle. Radii
below one pixel are clamped to one pixel and the opacity
is lowered to compensate to prevent aliasing due to sub
pixel sized particles. Coverage-masks or multiple samples
per pixel were not used because unlike polygons whose edges
often touch each other to make a continuous surface, the
edges of particles usually do not line up.

4.2 Sorting Fragments and Calculating Transparency

After the color, opacity and depth are calculated for all the
fragments in the image patch being rendered, the fragments

are reordered within the CM to make all the fragments cov
ering the same pixel adjacent to each other. They are also
sorted within the pixel groups by depth.

The parallel operator acan operates on values in ID ar
rays of processors. It allows each processor to receive the
sum (or product) of all the values in the preceding pro
cessors. A segmented scan can be performed on groups of
processors to prevent the results from spreading beyond the

group. Local sums and products can be efficiently calculated
for groups of processors of variable sizes.

Within each pixel group acan with multiply is applied to
the fragment's transparencies from front to back to deter
mine the total pixel contribution of each fragment. Then,
acan with add is applied to each color component and the
opacity, each scaled by the fragment's pixel contribution.
The last processor in each pixel group receives the final pixel
color and opacity.

The pixel colors are then sent to processors in the 2D
image patch virtual processor set. Each virtual processor
representing one pixel of the image patch being rendered
receives the final color and opacity from the fragments cov
ering it, if any. Background color is added if necessary, and
the patch is finally output to a frame buffer or file.

4.3 Mixing with Other Data Types

A recent addition to this system allows particles to be mixed
with other renderable data types such as polygons. The frag
ments of both particles and polygons are depth sorted to
gether and rendered simultaneously. This permits any num
ber of layers of particles and polygonal objects to move in
front of and behind each other with correct hidden surfaces.
This can be preferable to rendering the different data types
separately and then compositing the images together after
wards.

5 Results

The animated film Particle Dreama [24] was created entirely
using the animation and rendering tools described above. It
contains orbiting fire, an explosion, a snow storm, a crashing
head, and a waterfall. These tools are also being used in
a commercial production environment to create "burning
logos," galaxies, and other effects.

5.1 Snow and Wind

A snow storm was created using white snowflake particles,
spirals, and vortices. Some snowflakes were created and
dropped above the field of view at each iteration. They
were given an initial velocity and spiral axis straight down
but with some random variation, and were bounced off the
plane of the ground with zero bounce and high friction, so
that once they hit, they stuck. [Figure 6a.]

Gravity and air friction were not considered because the
air friction damping and gravity would have canceled out at
a steady critical velocity.

Gusts of wind were made by moving pairs of vortices
across the field of view. A gust procedure was built from
two vortex operations so that gusts could be moved between
given start and end positions. Gusts were choreographed
and tested until the desired swirling effects were achieved.

Finally, "splat" shapes were created by duplicating par
ticles into several particles when they hit a vertical plane.

409

'
<

��
SIGGRAPH '90, Dallas, August 6-10, 1990

Figure 4: Water.

5.2 Falling Water

A waterfall was simulated by applying gravity to blue par
ticles and bouncing them off obstacles made of planes and
spheres.

Some water droplet particles were created on each iter
ation randomly within an area at the top of the waterfall.
When particles fiowed over the last edge at the bottom of the
waterfall they were recycled back to the top of the waterfall.
Around 60K particles were used for this animation.

Splashes were achieved by placing spherical rocks of dif
ferent sizes in the path of the fiow. The droplets were
bounced off the rocks with friction and resilience that var
ied randomly within a range. When a bounce was detected,
the particles were turned from blue to white and then faded
slowly back to blue as they fell to the next rock. The vari
ety of blue to white particles gave the waterfall a sparkling
quality without any actual lighting calculations.

Motion blur was exaggerated in this sequence: the shut
ter speed was slightly more than the entire frame duration
to give the fiow a smoother look.

410

5.3 Fire

Fire simulation is a more complex effect that can be created
using these tools. Extensions to the utilities described above
allow arbitrary polygonal objects to be burned.

First, a large number of particles are created with their
initial positions located on the surface of the object. This
is done by triangulating the polygons of the object and cre
ating some particles randomly within each triangle. To give
an even distribution, the number created in each triangle
is proportional to the triangle's area. The particles' initial
velocities and spiral axes are set to directions between the
object's surface normal and the up-most surface tangent vec
tor to cause the fire particles to hug the surface somewhat
before curling up.

Second, several groupings of the particles are created,
and parameters of color and motion are set to be the same
or nearly the same within the groups. Particles are grouped
in small regions with similar colors, so different regions of
the surface emit different colored flames as if some regions
are hotter than others. The particles are also grouped into
Hickers. Each particle in a flicker group is given a similar
spiral axes, initial velocity, start time, and life duration, but
with slight variation, so that each Bicker had some coherency
and was perceived as a unit, rather than each particle being
independently random.

Figure 5: (a) Burning Letters, (b) Vortex Field.

Figure 6
(a) Snowstorm with vortex gust.(b) Self Breathing Head.
(c) Inverted Tornado.

9 ¢ Computer Graphics, Volume 24, Number 4, August 1990

Figure 7: Left
(a) Orbiting Fire.
(b) Explosion.

Figure 8: Waterfall.

411

SIGGRAPH '90, Dallas, August 6-10, 1990

The fire particles leave the surface and spiral upward
while changing color. After they fade and die, they are
recreated again at the initial position on the surface to start
another cycle. The spiral axis slowly rotates to prevent du
plicate motion, and the flickers have slightly different fre
quencies to create a pseudo-random rhythm that natural
fire can have.

6 Conclusion

Some general tools for animating and rendering particle sys
tems are implemented that permit both kinematic and dy
namic control of particles. They are used to create effects
that would probably be difficult to achieve using traditional
techniques, but there are still many potential additions to
this set of particle system utilities.

Future work in this area might include operations that
cause particles to influence each other: N-body types of sim
ulations might be used for galaxy simulations, more natural
fluid motion, or collision avoidance. In the current imple
mentation particles ignore each other and only follow global
rules, sometimes resulting in interpenetration.

More efficient collision detection of surfaces would be
beneficial. Currently every particle is tested against every
surface element. The ability to create procedural motion for
more complex objects (other than particles) including rigid
body dynamic simulations would also be desirable.

It would be interesting to compare the parallel speed of
particle rendering with that of a serial computer. This was
not done because of the unique parallel software implemen
tation. Rendering speed is approximately proportional to
the number of processors, and inversely proportional to the
number and sizes of the particles. Frame times commonly
vary from several seconds to several minutes.

Since data parallel computers have potential for growth
in both the speed of processors and the number of proces
sors, they should become more powerful and more available
in the future. Techniques that permit computer animation
of complex structure and motion automatically and can uti
lize data parallelism, such as those presented here, may soon
be more frequently used.

7 Acknowledgments

Thanks to Lew Tucker for continuing support. Thanks to
all the folks at Whitney /Demos Productions for a unique
learning experience. Thanks to Thinking Machines Corpo
ration for building Connection Machines computers and be
ing generous. Thanks to Jim Salem, Brewster Kahle, Gary
Oberbrunner, and Peter Schroeder for discussions and en
couragement. Thanks to J.P.Masser, Jeff Mincy, and Cliff
Lasser for Starlisp and its support. Thanks to Arlene Chung
and Debbie Mahe for layout and figures. And finally, thanks
to John Whitney Jr., Jerry Weil, and Optomystic for the en
vironment to put this work to use.

References

[1] Armstrong, W., Green, M., "The Dynamics of Artic
ulated Rigid Bodies for Purposes of Animation," Pro

ceedings Graphics Interface '85, pp. 407-415.

[2] Amburn, P., Grant, E., Whitted, T., "Managing Ge
ometric Complexity with Enhanced Procedural Meth
ods," Computer Graphics, Vol. 20, No. 4, August 1986.

412

[3] Barr, A., Barzel, R., "A Modeling System Based on Dy
namic Constraints," Computer Graphics, Vol. 22, No.
4, 1988, p. 179.

[4] Carpenter, L.C., "The A-buffer, an Anti-aliased Hidden
Surface Method," Computer Graphics, Vol. 18, No. 3,
1984.

[5] Fournier, A., Reeves, W., "A Simple Model of Ocean
Waves," Computer Graphics, Vol. 20, No. 4, 1986, pp.
75-84.

[6] Girard, M., Maciejewski, A., "Computational Model
ing for the Computer Animation of Legged Figures,"
Computer Graphics, Vol. 19, No. 3, 1985, pp 263-270.

[7] Hahn, J. K., "Realistic Animation of Rigid Bodies"
Computer Graphics, Vol. 22, No. 4, 1988, p. 299.

[8] Hillis, W. D., The Connection Machine, MIT Press,
1985.

[9] Hillis, W. D., "The Connection Machine," Scientific
American, Vol. 255, No. 6, June 1987.

[10] Lasser, C., Massar, J.P., Mincy, J., Dayton, L.,
"Starlisp Reference Manual," Thinking Machines Cor
poration, 1988

[11] Lucasfilm Ltd, The Adventures of Andre and Wally B.,
(film), August 1984.

[12] Miller, G., "The Motion of Snakes and Worms" Com
puter Graphics, Vol. 22, No. 4, 1988, p. 169.

[13] Oppenheimer, P. "Real time design and animation of
fractal plants and trees. Computer Graphics, Vol. 20,
No. 4, 1986, pp 55-64.

[14] Paramount, Star Trek II: The Wrath of Kahn, Genesis
Demo, also in SIGGRAPH Video Review 1982, ACM
SIGGRAPH, New York.

[15] Peachy, Darwyn R., "Modeling Waves and Surf," Com
puter Graphics, Vol. 20, No. 4, 1986, pp. 65-84.

[16] Platt, J., Barr, A., "Constraint Methods for Flexible
Models," Computer Graphics, Vol. 22, No. 4, 1988, p.
279.

[17] Press, Flannery, Teukolsky, and Vetterling, Numerical
Recipes, Cambridge University Press, 1986, p. 248.

[18] Prusinkiewicz, P., Lindenmayer, A., and Hanan, J.,
"Developmental Models of Herbaceous Plants for Com
puter Imagery Purposes," Computer Graphics, Vol. 22
No. 4, 1988, pp. 141-150.

[19] Reeves, W. T., "Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects," ACM '.lransactions
on Graphics, Vol. 2, No. 2, April 1983, reprinted in
Computer Graphics 1983, pp. 359-376.

[20] Reeves, W. T., and Blau, R. Approximate and proba
bilistic algorithms for shading and rendering structured
particle systems. Computer Graphics, Vol. 19, No. 3,
1985, pp 313-322.

[21] Reffye, P., Edelin, C., Francon J., Jaeger, M., Puech,
C. "Plant Models Faithful to Botanical Structure and
Development," Computer Graphics Vol. 22, No. 4, 1988,
pp 151-158.

9 � Computer Graphics, Volume 24, Number 4, August 1990

[22] Reynolds, Craig W., "Flocks, Herds and Schools: A
Distributed Behavioral Model," Computer Graphics,
Vol. 21, No. 4, July 1987, pp 25-34.

[231 Simon, H.D., Scientific Applications of the Connection
Machine, World Scientific Publishing Co., 1988.

[24] Sims, K., Particle Dreams, SIGGRAPH Video Review
1988, ACM SIGGRAPH, New York.

[25] Smith, A. R., "Plants, Fractals, and Formal Lan
guages," Computer Graphics, Vol. 18, No. 3, pp. 1-10,
July 1984.

(26] Studio Base 2, Systeme Particulier, Chesnais, Alain,
SIGGRAPH Video Review 1987, ACM SIGGRAPH,
New York.

[27] Symbolics, Stanly and Stella in Breaking the Ice, SIG
GRAPH Video Review 1987, ACM SIGGRAPH, New
York.

[281 Terzopoulos, D., Fleischer, K., "Modeling Inelastic De
formation: Viscoelasticity, Plasticity, Fracture," Com
puter Graphics, Vol. 22, No. 4, 1988, p. 269.

(29] Thinking Machines Corporation, Connection Machine
Model CM-2 Technical Summary, technical report, May
1989.

[30] Weil, J., A T & T Bell Labs, Boom Boom Boom, SIG
GRAPH Video review 1987, ACM SIGGRAPH, New
York.

[31] Wilhelms, J. Barsky, B., "Using Dynamic Analysis for
the Animation of Articulated Bodies Such as Humans
and Robots," Proceedings Graphics Interface '85, pp.
97-104.

(321 Wilhelms, J., Moore, M., "Collision Detection and Re
sponse for Computer Animation," Computer Graphics,
Vol. 22, No. 4, 1988, p. 289.

[33] Yaeger, L., Upson, C., "Combining Physical and Visual
Simulation - Creation of the Planet Jupiter for the Film
2010," Computer Graphics, Vol. 20, No. 4, 1986, pp 85-
93.

Figure 9: Fire Breathing Dragon.. Fire was simulated with
particle systems. Dragon by Jerry Weil, Optomystic.

Figure 10: (a) Nebula, {b) Solar B.yby. Created by Jerry
Weil, Optomytic, for Earth Day Special 1990. {Nebula also
contains surfaces with color and opacity texture mapping.)

413

