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1 ABSTRACT 

This paper describes how evolutionary techniques of variation and 

selection can be used to create complex simulated structures, tex­

tures, and motions for use in computer graphics and animation. 

Interactive selection, based on visual perception of procedurally 

generated results, allows the user to direct simulated evolutions in 

preferred directions. Several examples using these methods have 

been implemented and are described. 3D plant structures are grown 

using fixed sets of genetic parameters. Images, solid textures, and 

animations are created using mutating symbolic lisp expressions. 

Genotypes consisting of symbolic expressions are presented as an 

attempt to surpass the limitations of fixed-length genotypes with 

predefined expression rules. It is proposed that artificial evolution 

has potential as a powerful tool for achieving flexible complexity 

with a minimum of user input and knowledge of details. 

2 INTRODUCTION 

Procedural models are increasingly employed in computer graphics 

to create scenes and animations having high degrees of complexity. 

A price paid for this complexity is that the user often loses the 

ability to maintain sufficient control over the results. Procedural 

models can also have limitations because the details of the pro­

cedure must be conceived, understood, and designed by a human. 

The techniques presented here contribute towards solutions to these 

problems by enabling "evolution" of procedural models using inter­

active "perceptual selection." Although they do not give complete 

control over every detail of the results, they do permit the creation 

of a large variety of complex entities which are still user directed, 

and the user is not required to understand the underlying creation 

process involved. 

Many years ago Charles Darwin proposed the theory that all 

species came about via the process of evolution [2]. Evolution is 

now considered not only powerful enough to bring about biological 

entities as complex as humans and consciousness, but also useful 

in simulation to create algorithms and structures of higher levels 

of complexity than could easily be built by design. Genetic algo­

rithms have shown to be a useful method of searching large spaces 
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using simulated systems of variation and selection [5, 6, 7, 23]. 

In The Blind Watchmaker, Dawkins has demonstrated the power 

of Darwinism with a simulated evolution of 2D branching struc­

tures made from a set of genetic parameters. The user selects the 

"biomorphs" that survive and reproduce to create each new gen­

eration [3, 4]. Latham and Todd have applied these concepts to 

help generate computer sculptures made with constructive solid 

geometry techniques [9, 28]. 

Variations on these techniques are used here with the emphasis 

on the potential of creating forms, textures, and motions that are 

useful in the production of computer graphics and animation, and 

also on the potential of using representations that are not bounded 

by a fixed space of possible results. 

2.1 Evolution 

Both biological and simulated evolutions involve the basic con­

cepts of genotype and phenotype, and the processes of expression, 

selection, and reproduction with variation. 

The genotype is the genetic information that codes for the cre­

ation of an individual. In biological systems, genotypes are nor­

mally composed of DNA. In simulated evolutions there are many 

possible representations of genotypes, such as strings of binary dig­

its, sets of procedural parameters, or symbolic expressions. The 

phenotype is the individual itself, or the form that results from the 

developmental rules and the genotype. Expression is the process 

by which the phenotype is generated from the genotype. For ex­

ample, expression can be a biological developmental process that 

reads and executes the information from DNA strands, or a set of 

procedural rules that utilize a set of genetic parameters to create a 

simulated structure. Usually, there is a significant amplification of 

information between the genotype and phenotype. 

Selection is the process by which the fitness of phenotypes is 

determined. The likelihood of survival and the number of new 

offspring an individual generates is proportional to its fitness mea­

sure. Fitness is simply the ability of an organism to survive and 

reproduce. In simulation, it can be calculated by an explicitly de­

fined fitness evaluation function, or it can be provided by a human 

observer as it is in this work. 

Reproduction is the process by which new genotypes are gen­

erated from an existing genotype or genotypes. For evolution to 

progress there must be variation or mutations in new genotypes with 

some frequency. Mutations are usually probabilistic as opposed to 

deterministic. Note that selection is, in general, non-random and 

is performed on phenotypes; variation is usually random and is 

performed on the corresponding genotypes [See figure 1]. 
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Figure 1: Phenotype selection, genotype reproduction. 

The repeated cycle of reproduction with variation and selection 

of the most fit individuals drives the evolution of a population 

towards higher and higher levels of fitness. 

Sexual combination can allow genetic material of more than one 

parent to be mixed together in some way to create new genotypes. 

This permits features to evolve independently and later be combined 

into a single individual. Although it is not necessary for evolution 

to occur, it is a valuable practice that can enhance progress in both 

biological and simulated evolutions. 

2.2 Genetic Algorithms 

Genetic algorithms were first developed by Holland [11) as robust 

searching techniques in which populations of test points are evolved 

by random variation and selection. They have become widely used 

in a number of applications to find optima in very large search 

spaces [6, 7, 23). 

Genetic algorithms differ from the examples presented in this 

paper in that they usually utilize an explicit analytic function to 

measure the fitness of phenotypes. Since it is difficult to auto­

matically measure the aesthetic visual success of simulated objects 

or images, here the fitness is provided by a human user based on 

visual perception. Some combinations of automatic selection and 

interactive selection are also utilized. 

Population sizes used for genetic algorithms are usually fairly 

large (100 to 1000 or more) to allow searching of many test points 

and avoiding only local optima. At each generation, many indi­

viduals survive and reproduce to create the next generation. For 

the examples presented in this paper, the success of a solution is 

dependent on human opinion, therefore there is no single global 

optimum. Many local optima are potentially interesting solutions. 

For this reason, and also because of user interface practicality, a 

smaller population size has been used (20 - 40), and only one or 

two individuals are chosen to reproduce for each new generation. 

Genotypes used in genetic algorithms traditionally consist of 

fixed-length character strings used by fixed expression rules. This 

is appropriate for searching predefined dimensional spaces for opti­

mum solutions, but these restrictions are sometimes limiting. Koza 

[12, 13) has used hierarchical lisp expressions as genotypes such 

that the dimensionality of the search space itself can be extended 

to successfully solve problems such as artificial ant navigation and 
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game strategies. Discovery systems, such as AM, Eurisko, and 

Cyrano, also utilize a form of mutating lisp programs [8, 14]. The 

examples of evolving images, volume textures, and animations 

presented here also use genotypic representations composed of lisp 

expressions, although the set of functions used includes various 

vector transformations, noise generators, and image processing op­

erations, as well as standard numerical functions. 

In the next section, techniques for using artificial evolution to 

explore samples in parameter spaces are discussed. In section 4, ex­

amples of evolving images, volume textures, and animations which 

utilize mutating symbolic expressions as genotypes are presented. 

Finally, results, suggestions for future work, and conclusions are 

given in the last three sections. 

3 EXPLORING PARAMETER SPACES 

Procedural models such as fractals, graftals, and procedural textur­

ing allow a user to create a high degree of complexity with relatively 

simple input information [18, 19, 21, 25). One method of proce­

dural structure creation involves a set of N input parameters each 

of which has an effect on a developmental process which assem­

bles the structure. The set of possible structures corresponds to the 

N-dimensional space of possible parameter values. Consider an

array of knobs, each controlling one parameter, that can be exper­

imentally turned to adjust the results. As more options are added

to the procedure for more variation of results, the number of in­

put parameters grows and it can become increasingly difficult for

a user to predict the effects of adjusting particular parameters and

combinations of parameters, and to adjust the knobs effectively by

hand.

An alternative approach is to sample randomly in the neigh­

borhood of a currently existing parameter set by making random 

alterations to a parameter or several parameters, then inspect and 

select the best sample or samples of those presented. This allows 

exploration through the parameter space in incremental arbitrary 

directions without requiring knowledge of the specific effects of 

each parameter. This is artificial evolution in which the genotype is 

the parameter set, and the phenotype is the resulting structure. Se­

lection is performed by the user picking preferred phenotypes from 

groups of samples, and as long as the samples can be generated and 

displayed quickly enough, it can be a useful technique. 

3.1 Evolving 3D Plant Structures 

The first example of artificial evolution involves 3D plant structures 

which can be grown using a set of "genetic" parameters. Plant 

generation algorithms of various types have been shown to be useful 

examples of procedurally generated structures [ 1, 16, 21, 22, 25, 29). 

The model used in this work is described briefly below, but details 

have been omitted as the emphasis is on the evolutionary process. 

Parameters describing fractal limits, branching factors, scaling, 

stochastic contributions, etc., are used to generate 3-dimensional 

tree structures consisting of connected segments. Growth rules use 

21 genetic parameters and the hierarchy location of each segment 

in the tree to determine how fast that segment should grow, when 

it should generate new buds, and in which directions. The tree 

structures are grown in arbitrarily small increments for smooth 

simulation of development. 

After a desirable tree structure has been evolved using inter­

active selection and the mutation methods described below, its 
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phenotype can be saved for further manipulation. Solid polygo­
nal branches can be generated with connected cylinders and cone 
shapes, and leaves can be generated by connecting sets of periph­
eral nodes with polygonal surfaces. Shading parameters, color, 
and bump textures can be assigned to make bark and leaf surfaces. 
These additional properties could also be selected and adjusted us­
ing artificial evolution, but due to the longer computation times 
involved to test samples, these parameters were adjusted by hand. 
In some cases, leaf shapes were evolved independently and then ex­
plicitly added to the tip segments of other evolved plant structures. 
A forest of plant structures created using these methods is shown in 
figure 3. 

3.2 Mutating Parameter Sets 

For artificial evolution of parameter sets to occur, they must be 
reproduced with some probability of mutation. There are many 
possible methods for mutating parameter sets. The technique used 
here involves normalizing each parameter for a genetic value be­
tween .0 and 1.0, and then copying each genetic value or gene, 9i, 
from the parent to the child with a certain probability of mutation, 
m. A mutation is achieved by adding a random amount, ±d, to the
gene. So, a new genotype, G', is created using each gene, 9i, of a
parent genotype, G, as follows:

For each g; 
Ifrand(.0, 1.0) < m 

then g; = 9i + rand( -d, d) 
clamp or wrap g; to legal bounds. 

else g; = g; 

The normalized values are scaled, offset, and optionally squared to 
give the parameter values actually used. This allows the mutation 
distances, ±d, to be proportional to the scale of the range of valid 
parameter values. Squaring or raising some values to even higher 
powers can be useful because it causes more sensitivity in the lower 
region of the range of parameter values. The mutation rate and 
amount are easily adjusted, but are commonly useful at much higher 
values than in natural systems (m = 0.2, d = 0.4). The random 
value between -d and d might preferably be found using a Gaussian 
distribution instead of this simple linear distribution, giving smaller 
mutations more likelihood than larger ones. 

3.3 Mating Parameter Sets 

When two parameter sets are found that both create structures with 
different successful features, it is sometimes desirable to combine 
these features into a single structure. This can be accomplished by 
mating them. Reproducing two parameter sets with sexual combi­
nation can be performed in many ways. Four possible methods are 
listed below with some of their resulting effects: 

I. Crossovers can be performed by sequentially copying genes
from one parent, but with some frequency the source genotype is 
switched to the other parent. This causes adjacent genes to be more 
likely to stick together than genes at opposite ends of the sequence. 
Each pair of genes has a linkage probability depending on their 
distance from each other. 

2. Each gene can be independently copied from one parent or 
the other with equal probability. If the parent genes each correspond 
to a point in N-dimensional genetic space, then the genes of the 
possible children using this method correspond to the 2N comers 

Figure 2: Mating plant structures. 

Figure 3: Forest of"evolved" plants. 

of the N -dimensional rectangular solid connecting the two parent 
points. This method is the most commonly used in this work and is 
demonstrated in figure 2. Two parent plant structures are shown in 
the upper left boxes, and the remaining forms are their children. 

3. Each gene can receive a random percentage, p, of one par­
ent's genes, and a 1 - p percentage of the other parent's genes. 
If the percentage is the same for each gene, linear interpolation 
between the parent genotypes results, and the children will fall 
randomly on the line between the N-dimensional points of the par­
ents. If evenly spaced samples along this line were generated, a 
genetic dissolve could be made that would cause a smooth transition 
between the parent phenotypes if the changing parameters had con­
tinuous effects on the phenotypes. This is an example of utilizing 
the underlying genetic representation for specific manipulation of 
the results. Interpolation could also be performed with three parents 
to create children that fall on a triangular region of a plane in the 
N -dimensional genetic space. 

4. Finally, each new gene can receive a random value between
the two parent values of that gene. This is like the interpolation 
scheme above, except each gene is independently interpolated be-
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tween the parent genes. This method results in possible children 

anywhere within the N -dimensional rectangular solid connecting 

the parent points. 

Mutating and mating parameter sets allow a user to explore and 
combine samples in a given parameter space. In the next section, 
methods are presented that allow mutations to add new parameters 
and extend the space, instead of simply adjusting existing parameter 

values. 

4 SYMBOLIC EXPRESSIONS AS GENOTYPES 

A limitation of genotypes consisting of a fixed number of parameters 

and fixed expression rules as described above is that there are solid 
boundaries on the set of possible phenotypes. There is no possibility 
for the evolution of a new developmental rule or a new parameter. 
There is no way for the genetic space to be extended beyond its 
original definition - the N -dimensional genetic space will remain 
only N-dimensional. 

To surpass this limitation, it is desirable to include procedural 
information in the genotype instead of just parameter data, and 
the procedural and data elements of the genotype should not be 
restricted to a specific structure or size. 

Symbolic lisp expressions are used as genotypes in an attempt 
to meet these needs. A set of lisp functions and a set of argument 
generators are used to create arbitrary expressions which can be 

mutated, evolved, and evaluated to generate phenotypes. Some 
mutations can create larger expressions with new parameters and 
extend the space of possible phenotypes, while others just adjust 
existing parts of the expression. Details of this process are best 
described by the examples below. 

4.1 Evolving Images 

The second example of artificial evolution involves the generation 

of textures by mutating symbolic expressions. Equations that cal­

culate a color for each pixel coordinate (x, y) are evolved using a 
function set containing some standard common lisp functions [26], 
vector transformations, procedural noise generators, and image pro­

cessing operations: 

+, -, *,/,mod, round, min, max, abs, expt, log, and, 
or, xor, sin, cos, atan, if, dissolve, hsv-to-rgb, vector, 
transform-vector, bw-noise, color-noise, warped-bw­
noise, warped-color-noise, blur, band-pass, grad-mag, 
grad-dir, bump, ifs, warped-ifs, warp-abs, warp-rel, 
warp-by-grad. 

Each function takes a specified number of arguments and calculates 
and returns an image of scalar (b/w) or vector (color) values. 

Noise generators can create solid 2D scalar and vector noise 
at various frequencies with random seeds passed as arguments so 
specific patterns can be preserved between generations [figure 4f, 
and 4i]. The warped versions of functions take (U, V) coordinates 
as arguments instead of using global (X, Y) pixel coordinates, 
allowing the result to be distorted by an arbitrary inverse mapping 

function [figure 4i]. Boolean operations (and, or, and xor) operate 
on each bit of floating-point numbers and can cause fractal-like 

grid patterns [figure 4e]. Versions of sin and cos which normalize 

their results between .0 and 1.0 instead of -1.0 and 1.0 can be 
useful. Some functions such as blurs, convolutions, and those that 
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Figure 4: Simple expression examples. 

(reading left to right, top to bottom) 
a. X
b. y
c. (abs X) 

d. (modX (abs Y))
e. (and X Y)
f. (bw-noise .2 2)
g. ( color-noise .1 2)
h. (grad-direction (bw-noise .15 2) .0 .0)
i. (warped-color-noise(* X .2) Y .1 2)

use gradients also use neighboring pixel values to calculate their 
result [figure 4h]. Band-pass convolutions can be performed using 
a difference of Gaussians filter which can enhance edges. Iterative 
function systems (ifs) can generate fractal patterns and shapes. 

Details of the specific implementations of these functions are 
not given here because they are not as important as the methods used 

for combining them into longer expressions. Many other functions 
would be interesting to include in this function set, but these have 
provided for a fairly wide variety of resulting images. 

Simple random expressions are generated by choosing a func­
tion at random from the function set above, and then generating as 
many random arguments as that function requires. Arguments to 
these functions can be either scalars or vectors, and either constant 

values or images of values. Random arguments can be generated 
from the following forms: 

- A random scalar value such as .4
- A random 3-element vector such as #(.42 .23 .69)
- A variable such as the X or Y pixel coordinates.
- Another lisp expression which returns a b/w or

color image.

Most of the functions have been adapted to either coerce the 
arguments into the required types, or perform differently according 
to the argument types given to them. Arguments to certain functions 

can optionally be restricted to some subset of the available types. 

For the most part these functions receive and return images, and 

can be considered as image processing operations. Expressions are 
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simply evaluated to produce images. Figure 4 shows examples of 
some simple expressions and their resulting images. 

Artificial evolution of these e_xpressions is performed by first 
generating and displaying a population of simple random expres­
sions in a grid for interactive selection. The expressions of images 
selected by the user are reproduced with mutations for each new 
generation such that more and more complex expressions and more 
perceptually successful images can evolve. Some images evolved 
with this process are shown in figures 9 to 13. 

4.2 Mutating Symbolic Expressions 

Symbolic expressions must be reproduced with mutations for evo­
lution of them to occur. There are several properties of symbolic 
expression mutation that are desirable. Expressions should often 
be only slightly modified, but sometimes significantly adjusted in 
structure and size. Large random changes in genotype usually 
result in large jumps in phenotype which are less likely to be im­
provements, but are necessary for extending the expression to more 
complex forms. 

A recursive mutation scheme is used to mutate expressions. 
Usp expressions are traversed as tree structures and each node is in 
turn subject to possible mutations. Each type of mutation occurs at 
different frequencies depending on the type of node: 

1. Any node can mutate into a new random expression. This
allows for large changes, and usually results in a fairly significant 
alteration of the phenotype. 

2. If the node is a scalar value, it can be adjusted by the addition
of some random amount. 

3. If the node is a vector, it can be adjusted by adding random
amounts to each element. 

4. If the node is a function, it can mutate into a different function.
For example ( abs X) might become ( cos X). If this mutation occurs, 
the arguments of the function are also adjusted if necessary to the 
correct number and types. 

5. An expression can become the argument to a new random
function. Other arguments are generated at random if necessary. 
For example X might become(* X .3).

6. An argument to a function can jump out and become the new
value for that node. For example ( * X .3) might become X. This is 
the inverse of the previous type of mutation. 

7. 'Finally, a node can become a copy of another node from the
parent expression. For example ( + ( abs X) ( * Y .6 )) might become 
(+(abs(* Y .6)) (* Y .6)). This causes effects similar to those caused 
by mating an expression with itself. It allows for sub-expressions 
to duplicate themselves within the overall expression. 

Other types of mutations could certainly be implemented, but 
these are sufficient for a reasonable balance of slight modifications 
and potential for changes in complexity. 

It is preferable to adjust the mutation frequencies such that a 
decrease in complexity is slightly more probable than an increase. 
This prevents the expressions from drifting towards large and slow 
forms without necessarily improving the results. They should still 
easily evolve towards larger sizes, but a larger size should be due 
to selection of improvements instead of random mutations with no 
effect. 

The relative frequencies for each type of mutation above can be 
adjusted and experimented with. The overall mutation frequency is 
scaled inversely in proportion to the length of the parent expression. 
This decreases the probability of mutation at each node when the 

parent expression is large so that some stability of the phenotypes 
is maintained. 

The evaluation of expressions and display of the resulting im­
ages can require significant calculation times as expressions in­
crease in complexity. To keep image evolution at interactive speeds, 
estimates of compute speeds are calculated for each expression by 
summing pre-computed runtime averages for each function. Slow 
expressions are eliminated before ever being displayed to the user. 
New offspring with random mutations are generated and tested until 
fast enough expressions result. In this way automatic selection is 
combined with interactive selection. If necessary, this technique 
could also be performed to keep memory usage to a minimum. 

4.3 Mating Symbolic Expressions 

Symbolic expressions can be reproduced with sexual combinations 
to allow sub-expressions from separately evolved individuals to be 
mixed into a single individual. Two methods for mating symbolic 
expressions are described. 

The first method requires the two parents to be somewhat sim­
ilar in structure. The nodes in the expression trees of both parents 
are simultaneously traversed and copied to make the new expres­
sion. When a difference is encountered between the parents, one 
of the two versions is copied with equal probability. For example, 
the following two parents can be mated to generate four different 
expressions, two of which are equal to the parents, and two of which 
have some portions from each parent: 

parent!:(* (abs X) (modX Y))

parent2: (* (! Y X) (* X -.7))

child 1: (* (abs X) (mod X Y)) 

child2: (* (abs X) (* X -.7))

child3: (* (/ YX) (modXY))

child4: (* (I YX) (*X -.7))

This method is often useful for combining similar expressions that 
each have some desired property. It usually generates offspring 
without very large variations from the parents. Two expressions 
with different root nodes will not form any new combinations. This 
might be compared to the inability of two different species to mate 
and create viable offspring. 

The second method for mating expressions combines the parents 
in a less constrained way. A node in the expression tree of one parent 
is chosen at random and replaced by a node chosen at random from 
the other parent. This crossing over technique allows any part 
of the structure of one parent to be inserted into any part of the 
other parent and permits parts of even dissimilar expressions to be 
combined. With this method, the parent expressions above can 
generate 61 different child expressions - many more than the 4 of 
the first method. 

4.4 Evolving Volume Textures 

A third variable, Z, is added to the list of available arguments to 
enable functions to be evolved that calculate colors for each point in 
(X, Y, Z) space. The function set shown in section 4.1 is adjusted 
for better results: 2D functions that require neighboring pixel values 
such as convolutions and warps are removed, and 3D solid noise 
generating functions are added. 

These expressions are more difficult to visualize because they 
encompass all of 3D space. They are evaluated on the surfaces 
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Figure 5: Parent with 19 random mutations. 

Figure 6: Marble and wooden tori. 

of spheres and planes for fast previewing and selection as shown 
in figure 5. Evolved volume expressions can then be incorporated 
into procedural shading functions to texture arbitrary objects. This 
process allows complex volume textures such as those described 
in (18] and [19] to be evolved without requiring specific equations 
to be understood and carefully adjusted by hand. Figure 6 was 
generated by evolving three volume texture expressions and then 
evaluating them at the surfaces positions of three objects during the 
rendering process. 

4.5 Evolving Animations 

Several extensions to the image evolution system described above 
can be used to evolve moving images. Five methods for incorpo­
rating a temporal dimension in symbolic expressions are proposed: 

1. Another input variable, Time, can be added to the list of
available arguments. Expressions can be evolved that are functions 
of X, Y, and Time such that different images are produced as the 
value of Time is smoothly animated. More computation is required 
to generate, display and select samples because a sequence of im-
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ages must be calculated. An alternate method of display involves 
displaying various slices of the (X, Y, Time) space (although op­
erations requiring neighboring pixel values might not receive the 
correct information if the values of Time vary between them). 

2. Genetic cross dissolves can be performed between two ex­
pressions of similar structure. Interpolation between two expres­
sions is performed by matching the expressions where they are iden­
tical and interpolating between the results where they are different. 
Results of differing expression branches are first calculated and 
dissolved, and then used by the remaining parts of the expression. 
If the two expressions have different root nodes, a conventional 
image dissolve will result. If only parts within their structures are 
different, interesting motions can occur. This technique utilizes the 
existing genetic representation of evolved still images to generate 
in-betweens for a smooth transition from one to another. It is an 
example of the usefulness of the alternate level of control given 
by the underlying genetic information. A series of frames from a 
genetic cross dissolve are shown in figure 7. 

3. An input image can be added to the list of available arguments
to make functions of X, Y, and Image. The input image can then 
be animated and processed by evaluating the expression multiple 
times for values of Image corresponding to frames of another 
source of animation such as hand drawn or traditional 3D computer 
graphics. This is effectively a technique for evolving complex 
image processing and warping functions that compute new images 
from given input images. Figure 8 was created in this way with an 
input image of a human face. 

4. The images that use the pixel coordinates (X, Y) to de­
termine the colors at each pixel can be animated by altering the 
mappings of X and Y before the expression is evaluated. Simple 
zooming and panning can be performed as well as 3D perspective 
transformations and arbitrary patterns of distortion. 

5. Evolved expressions can be adjusted and experimented with
by hand. If parameters in expressions are smoothly interpolated 
to new values, the corresponding image will change in potentially 
interesting ways. For example, solid noise can be made to change 
frequency, colors can be dissolved into new shades, and angles 
can be rotated. This is another example of utilizing the underlying 
genetic information to manipulate images. A small change in the 
expression can result in a powerful alteration of the resulting image. 

Finally, the techniques above can be used together in various 
combinations to make an even wider range of possibilities for evolv­
ing animations. 

Figure 7: Frames from a "genetic cross dissolve." 
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5 RESULTS 

Figure 8: Fire of Faces. 

Evolution of 3D plant structures, images, solid textures, and an­

imations have been implemented on the Connection Machine (R) 

system CM-2, a data parallel supercomputer [10, 27]. The parallel 

implementation details will not be discussed in this paper, but each 

application is reasonably suited for highly parallel representation 

and computation. Lisp expression mutations and combinations are 

performed on a front-end computer and the Connection Machine 

system is used to evaluate the expression for all pixels in parallel 

using Starlisp and display the resulting image. 

3D Plant structures have been evolved and used in the animated 

short Panspermia [24]. A frame from this sequence is shown in 

figure 3 which contains a variety of species created using these 

techniques. An interactive system for quickly growing, displaying, 

and selecting sample structures allows a wide range of plant shapes 

to be efficiently created by artificial evolution. Populations of 

samples can be displayed for selection in wire frame in a grid format 

as shown in figure 2, or displayed as separate higher-resolution 

images which can be interactively flipped through by scrolling with 

a mouse. Typically between 5 and 20 generations are necessary for 

acceptable structures to emerge. 

Images, volume textures, and various animations have been 

created using mutating symbolic expressions. These sometimes 

require more generations to evolve complex expressions that give 

interesting images - often at least IO to 40 generations. Again, an 

interactive tool for quickly displaying grids of sample images to be 

selected amongst makes the evolution process reasonably efficient. 

[See figure 5.] The number of possible symbolic expressions of 

acceptable length is extremely large, and a wide variety of textures 

and patterns can occur. Completely unexpected kinds of images 

have emerged. Figure 9 was created from the following evolved 

expression: 

(round (log(+ y (color-grad (round(+ (abs (round 

(log ( + y (color-grad (round ( + y (log (invert y) 15.5)) 

x) 3.1 1.86 #(0.95 0.7 0.59) 135)) 0.19) x)) (log (invert

y) 15.5)) x) 3.1 1.9 #(0.95 0.7 0.35) 1.35)) 0.19) x)

Figure 9. 

Figure 10. 

Figure 11. 
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Figure 13 was created from this expression: 

( sin ( + (- ( grad-direction (blur (if (hsv-to-rgb (warped­

color-noise #(0.57 0.73 0.92) (/ 1.85 (warped-color­

noise xy 0.02 3.08)) 0.11 2.4)) #(0.54 0.73 0.59) #(1.06 

0.82 0.06)) 3.1) 1.46 5.9) (hsv-to-rgb (warped-color­

noise y (/ 4.5 (warped-color-noise y (Ix y) 2.4 2.4)) 

0.D2 2.4))) x))

Note that expressions only five or six lines long can generate images 
of fair complexity. Equations such as these can be evolved from 
scratch in timescales of only several minutes - probably much faster 
than they could be designed. 

Figures 10, 11, and 12 were also created from expressions of 
similar lengths. Fortunately, analysis of expressions is not required 
when using these methods to create them. Users usually stop at­
tempting to understand why each expression generates each image. 
However, for those interested, expressions for other figures are 
listed in the appendix. 

Two different approaches of user selection behavior are possi­
ble. The user can have a goal in mind and select samples that are 
closer to that goal until it is hopefully reached. Alternatively, the 
user can follow the more interesting samples as they occur without 
attempting to reach any specific goal. 

The results of these various types of1evolved expressions can
be saved in the very concise form of the f al genotypic expression 
itself. This facilitates keeping large libraries of evolved forms which 
can then be used to contribute to further evolutions by mating them 
with other forms or further evolving theml in new directions. 

6 FUTURE WORK 

Artificial evolution has many other possible applications for com­
puter graphics and animation. Procedures that use various other 
forms of solid noise could be explored, such as those that create ob­
jects, create density functions, or warp objects [20, 15]. Procedures 
could be evolved that generate motion from a set of rules (possibly 
cellular automata, or particle systems}, or that control distributions 
and characteristics of 2D objects such as lines, solid shapes, or brush 
strokes. Algorithms that use procedural construction rules to create 
3D objects from polygons, or functions that generate, manipulate, 
and combine geometric primitives could also be explored. 

These techniques might also make valuable tools in domains 
beyond computer simulations. New possibilities for shapes and 
textures could be explored for use in product design or the fashion 
industry. 

Several variations on the methods for artificial evolution de­
scribed above might make interesting experiments. Mutation fre­
quencies could be included in the genotype itself so that they also 
can be mutated. This might allow for the evolution of evolvability 
[4]. Frequencies from the most successful evolutions could be kept 
as the defaults. 

It might be interesting to attempt to automatically evolve a sym­
bolic expression that could generate a simple specific goal image. 
An image differencing function could be used to calculate afitness
based on how close a test image was to the goal, and an expression 
could be searched for by automatic selection. Then, interactive 
selection could be used to evolve further images starting with that 
expression. 
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Large amounts of information of all the human selection choices 
of many evolutions could be saved and analyzed. A difficult chal­
lenge would be to create a system that could generalize and "under­
stand" what makes an image visually successful, and even generate 
other images that meet these learned criteria. 

Combinations of random variations and non-random variations 
using learned information might be helpful. If a user picks pheno­
types in a certain direction from the parent, mutations for the next 
generation might have a tendency to continue in that same direction, 
causing evolution to have "momentum." 

Also, combinations of evolution and the ability to apply specific 
adjustments to the genotype might allow more user control over 
evolved results. Automatic "genetic engineering" could permit a 
user to request an evolved image to be more blue, or a texture more 
grainy. 

7 CONCLUSION 

Artificial evolution has been demonstrated to be a potentially pow­
erful tool for the creation of procedurally generated structures, tex­
tures, and motions. Reproduction with random variations and sur­
vival of the visually interesting can lead to useful results. Repre­
sentations for genotypes which are not limited to fixed spaces and 
can grow in complexity have shown to be worthwhile. 

Evolution is a method for creating and exploring complexity 
that does not require human understanding of the specific process 
involved. This process of artificial evolution could be considered 
as a system for helping the user with creative explorations, or it 
might be considered as a system which attempts to "learn" about 
human aesthetics from the user. In either case, it allows the user and 
computer to interactively work together in a new way to produce 
results that neither could easily produce alone. 

An important limiting factor in the usefulness of artificial evo­
lution is that samples need to be generated quickly enough such 
that it is advantageous for the user to choose from random samples 
instead of carefully adjusting new samples by hand. The computer 
needs to generate and display samples fast enough to keep the user 
interested while selecting amongst them. As computation becomes 
more powerful and available, artificial evolution will hopefully be­
come advantageous in more and more domains. 

8 Acknowledgments 

Thanks to Lew Tucker, Jim Salem, Gary Oberbrunner, Matt Fitzgib­
bon, Dave Sheppard, and Zotje Maes for help and support. Thanks 
to Peter Schroder for being a helpful and successful user of these 
tools. Thanks to Luis Ortiz and Katy Smith for help with document 
preparation. And_thanks to Danny Hillis, Larry Yaeger, and Richard 
Dawkins for discussions and inspiration. 

9 APPENDIX 

Figure 5, Parent expression: 
(warped-color-noise (warped-bw-noise (dissolve x 2.53 y) z 0.09 12.0) (invert z) 0.05 

-2.06) 

Figure 6, Marble torus: 
(dissolve (cos (and 0.25 #(0.43 0.73 0.74))) (log (+ (warped-bw-noise (min z l I.I) 

(log (rotate-vector(+ (warped-bw-noise (cos x) (dissolve (cos (and 0.25 #(0.43 0.73 

0.74))) (log(+ (warped-bw-noise (max (min z 8.26) () -0.5 #(0.82 0.39 0.19))) (log 

(+ (warped-bw-noise (cos x) z -0.04 0.89) #(0.82 0.39 0.19)) #(0.15 0.34 0.50)) -0.04 
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Figure 12.

Figure 13.
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-3.0) y) #(0.15 0.34 0.50)) y) -0.04 -3.0) x) z y) #(0.15 0.34 0.5)) -0.02 -1.79) -0.4) 
#(-0.09 0.34 0.55)) -0.7) 

Figure 7, Cross dissolve: 

(hsv-to-rgb (bump (hsv-to-rgb (ifs 2.29 0.003 (dissolve 1.77 3.67 time) 2.60.1 (dissolve 
5.2 3.2 time) -31.0 (dissolve 23.9 -7.4 time) (dissolve l .13 9.5 time) (dissolve 4.8 0.16 
time) 20.7 4.05 (dissolve 0.48 0.46 time) (dissolve 2.94 -0.68 time) (dissolve 0.42 0.54 
time) (dissolve 0.09 0.54 time))) (atan 2.25 (dissolve 0.1 0.11 time) 0.15) (dissolve 
4.09 8.23 time) (dissolve #(0.41 0.36 0.08) #(0.68 0.22 0.31) time) #(0.36 0.31 0.91) 

(dissolve 6.2 4.3 time) (dissolve 0. 16 0.40 time) (dissolve 2.08 0.23 time))) 

Figure 8, Fire of Faces: 

(+ (min 10.8 (warp-rel image image (bump image x 9.6 #(0.57 0.02 0.15) #(0.52 
0.03 0.38) 3.21 2.49 10.8))) (dissolve #(0.81 0.4 0. 16) x (dissolve y #(0.88 0.99 0.66) 
image))) 

Figure 10: 

(rotate-vector (log(+ y (color-grad (round(+ (abs (round (log #(0.01 0.67 0.86) 0.19) 
x)) (hsv-to-rgb (bump (if x 10.7 y) #(0.94 0.01 0.4) 0.78 #(0.18 0.28 0.58) #(0.4 0.92 
0.58) 10.6 0.23 0.91))) X) 3.1 1.93 #(0.95 0.7 0.35) 3.03)) -0.03) X #(0.76 0.08 0.24)) 

Figure 11 is unfortunately "extinct" because it was created before 

the genome saving utility was complete. 

Figure 12: 

(cos (round (atan (log (invert y) (+(bump (+(round x y) y) #(0.46 0.82 0.65) 0.02 #(0.1 
0.06 0.1) #(0.99 0.06 0.41) 1.47 8.7 3.7) (color-grad (round(+ y y) (log (invert x) (+ 
(inv�rt y) (round(+ y x) (bump (warped-ifs (round y y) y 0.08 0.06 7.4 1.65 6.1 0.54 
3.1 0.26 0.73 15.8 5.7 8.9 0.49 7.2 15.6 0.98) #(0.46 0.82 0.65) 0.02 #(0.1 0.06 0.1) 
#(0.99 0.06 0.41) 0.83 8.7 2.6))))) 3.1 6.8 #(0.95 0.7 0.59) 0.57))) #(0.17 0.08 0.75) 
0.37) (vector y 0.09 (cos (round y y))))) 
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